Annual Variability (annual + variability)

Distribution by Scientific Domains


Selected Abstracts


Fire, flow and dynamic equilibrium in stream macroinvertebrate communities

FRESHWATER BIOLOGY, Issue 2 2010
ROBERT S. ARKLE
Summary 1. The complex effects of disturbances on ecological communities can be further complicated by subsequent perturbations within an ecosystem. We investigated how wildfire interacts with annual variations in peak streamflow to affect the stability of stream macroinvertebrate communities in a central Idaho wilderness, USA. We conducted a 4-year retrospective analysis of unburned (n = 7) and burned (n = 6) catchments, using changes in reflectance values (,NBR) from satellite imagery to quantify the percentage of each catchment's riparian and upland vegetation that burned at high and low severity. 2. For this wildland fire complex, increasing riparian burn severity and extent were associated with greater year-to-year variation, rather than a perennial increase, in sediment loads, organic debris, large woody debris (LWD) and undercut bank structure. Temporal changes in these variables were correlated with yearly peak flow in burned catchments but not in unburned reference catchments, indicating that an interaction between fire and flow can result in decreased habitat stability in burned catchments. 3. Streams in more severely burned catchments exhibited increasingly dynamic macroinvertebrate communities and did not show increased similarity to reference streams over time. Annual variability in macroinvertebrates was attributed, predominantly, to the changing influence of sediment, LWD, riparian cover and organic debris, as quantities of these habitat components fluctuated annually depending on burn severity and annual peak streamflows. 4. These analyses suggest that interactions among fire, flow and stream habitat may increase inter-annual habitat variability and macroinvertebrate community dynamics for a duration approaching the length of the historic fire return interval of the study area. [source]


The spatial and temporal patterns of aggradation in a temperate, upland, gravel-bed river

EARTH SURFACE PROCESSES AND LANDFORMS, Issue 9 2009
Emma K. Raven
Abstract Intensive field monitoring of a reach of upland gravel-bed river illustrates the temporal and spatial variability of in-channel sedimentation. Over the six-year monitoring period, the mean bed level in the channel has risen by 0·17 m with a maximum bed level rise of 0·5 m noted at one location over a five month winter period. These rapid levels of aggradation have a profound impact on the number and duration of overbank flows with flood frequency increasing on average 2·6 times and overbank flow time increasing by 12·8 hours. This work raises the profile of coarse sediment transfer in the design and operation of river management, specifically engineering schemes. It emphasizes the need for the implementation of strategic monitoring programmes before engineering work occurs to identify zones where aggradation is likely to be problematic. Exploration of the sediment supply and transfer system can explain patterns of channel sedimentation. The complex spatial, seasonal and annual variability in sediment supply and transfer raise uncertainties into the system's response to potential changes in climate and land-use. Thus, there is a demand for schemes that monitor coarse sediment transfer and channel response. Copyright © 2009 John Wiley & Sons, Ltd. [source]


Tracking palustrine water seasonal and annual variability in agricultural wetland landscapes using Landsat from 1997 to 2005

GLOBAL CHANGE BIOLOGY, Issue 4 2007
OFER BEERI
Abstract Wetlands densely populate the ecoregion transecting the center of the Prairie Pothole Region (PPR) known as the Missouri Coteau and epicenter to the most productive waterfowl-breeding habitat in North America. These palustrine, depressional basin waters vacillate with regional drought and deluge, so surface water fluctuations over time modulate wetland productivity, habitat, and water quality functions. Models predict formidable effects of climate change on glacial basin surface waters, yet large-scale, long-term observation data are lacking to compare against predicted changes. Current, optical-based water detection models do not delineate marsh vegetation from shallow, turbid, high-chlorophyll waters common to the region. We developed a palustrine wetland spectral model for tracking open surface waters using Landsat imagery, which we evaluated for a 2500 km2 landscape that estimates seasonal and annual open water variability for thousands of individual wetlands in the Missouri Coteau ecoregion. Detection accuracy of 96% was achieved for water bodies greater than a half-pixel in size. We identified shifts in the distribution of water permanence classes within and between years for waters emerging in spring, mid-summer, and late summer from 1997 to 2005 and identified a maximum of 19 047 basins with open water (12% of the landscape) populating 2500 km2. For the 2005 growing season, we observed only 8757 basins with open water (6% of the landscape) for the same area. Declines were greatest for water bodies detected only in spring, suggesting a loss of those wetlands functioning to recharge groundwater stores early in the season and a high sensitivity to observed reductions in snowfall. If landscape factors driving open water coverage and wetland density are similar for the entire Missouri Coteau, we estimate the number of basins containing at least a pixel of water for this region declined from 577 600 to 266 000 between 1997 and 2005. [source]


Predictions of future climate change in the caribbean region using global general circulation models

INTERNATIONAL JOURNAL OF CLIMATOLOGY, Issue 5 2007
Moises E. Angeles
Abstract Since the 1800s the global average CO2 mixing ratio has increased and has been related to increases in surface air temperature (0.6 ± 0.2 °C) and variations in precipitation patterns among other weather and climatic variables. The Small Island Developing States (SIDS), according to the 2001 report of the Intergovernmental Panel on Climate Change (IPCC), are likely to be among the most seriously impacted regions on Earth by global climate changes. In this work, three climate change scenarios are investigated using the Parallel Climate Model (PCM) to study the impact of the global anthropogenic CO2 concentration increases on the Caribbean climate. A climatological analysis of the Caribbean seasonal climate variation was conducted employing the National Center for Environmental Prediction (NCEP) reanalysis data, the Xie,Arkin precipitation and the Reynolds,Smith Sea Surface Temperature (SST) observed data. The PCM is first evaluated to determine its ability to predict the present time Caribbean climatology. The PCM tends to under predict the SSTs, which along with the cold advection controls the rainfall variability. This seems to be a main source of bias considering the low model performance to predict rainfall activity over the Central and southern Caribbean. Future predictions indicate that feedback processes involving evolution of SST, cloud formation, and solar radiative interactions affect the rainfall annual variability simulated by PCM from 1996 to 2098. At the same time two large-scale indices, the Southern Oscillation Index (SOI) and the North Atlantic Oscillation (NAO) are strongly related with this rainfall annual variability. A future climatology from 2041 to 2058 is selected to observe the future Caribbean condition simulated by the PCM. It shows, during this climatology range, a future warming of approximately 1 °C (SSTs) along with an increase in the rain production during the Caribbean wet seasons (early and late rainfall seasons). Although the vertical wind shear is strengthened, it typically remains lower than 8 m/s, which along with SST > 26.5 °C provides favorable conditions for possible future increases in tropical storm frequency. Copyright © 2006 Royal Meteorological Society [source]


Rangeland development of the Mu Us Sandy Land in semiarid China: an analysis using Landsat and NOAA remote sensing data

LAND DEGRADATION AND DEVELOPMENT, Issue 2 2003
M. C. Runnström
Abstract Degradation of the dry semiarid ecosystems in the Mu Us Sandy Land of north central China was explored using high-resolution satellite images from 1978, 1987 and 1996. This study monitored both changes in grassland biomass production and reclamation activities to detect the nature and scale of land degradation since major economic reforms were introduced in 1978. The position of the high-resolution images within the vegetation cycles was inspected from National Oceanographic and Atmospheric Administration (NOAA) NDVI images at 10-day repetition and seasonal precipitation patterns. A model was developed to categorize changes in the vegetation signal activity from 30,×,30,m pixels into vegetation cover development and land-use changes between 1987 and 1996. A general increase of biomass production was evident despite the rapid increase in numbers of grazing animals. This increase in biomass was confirmed by the NOAA time series, which also revealed annual variability related to the amount and pattern of the seasonal rains. Rangeland conversion to farmland was detected, and this process has increased the area of cultivation almost fivefold. The classified area of cultivation corresponds with reported statistical records, also showing that irrigation features in virtually 100 per cent of the sown area. Signs of declining biological production, indicating land degradation processes, are few. Biomass production has increased, with a gain in the economic output from both crop and animal production. The early start of active measures to halt desertification has increased vegetation cover and lowered wind erosion potential and grasslands seems to be managing the high levels of grazing pressure. Copyright © 2003 John Wiley & Sons, Ltd. [source]


Dissecting components of population-level variation in seed production and the evolution of masting behavior

OIKOS, Issue 3 2003
Walter D. Koenig
Mast-fruiting or masting behavior is the cumulative result of the reproductive patterns of individuals within a population and thus involves components of individual variability, between-individual synchrony, and endogenous cycles of temporal autocorrelation. Extending prior work by Herrera, we explore the interrelationships of these components using data on individual seed production in 59 populations of plants from 24 species spanning a large range of annual variability, from species exhibiting strong masting to others with little annual variability in seed production. Estimates of population and individual variability were not biased by sample size or average overall seed production when based on untransformed seed production values, but these values declined as log-transformed seed production increased. Population variability was more strongly correlated with individual variability (r=0.86) than individual synchrony (r=0.73). These latter two components were also significantly correlated (r=0.45), but randomizations confirm that they need not covary closely. Thus, selection can act separately on inter-annual variability and between-individual synchrony. We illustrate the potential for such fine-tuned selection on seed production patterns by discussing several examples and by demonstrating significant differences in components of population-level variation in seed production among species related to their life-history. [source]