Home About us Contact | |||
Host Species (host + species)
Kinds of Host Species Selected AbstractsParasites lost , do invaders miss the boat or drown on arrival?ECOLOGY LETTERS, Issue 4 2010Catriona J. MacLeod Ecology Letters (2010) 13: 516,527 Abstract Host species that colonize new regions often lose parasite species. Using population arrival and establishment data for New Zealand's introduced bird species and their ectoparasitic chewing lice species, we test the relative importance of different processes and mechanisms in causing parasite species loss. Few lice failed to arrive in New Zealand with their hosts due to being missed by chance in the sample of hosts from the original population (missing the boat). Rather, most lice were absent because their hosts or the parasite themselves failed to establish populations in their new environment. Given they arrived and their host established, parasite persistence was more strongly related to factors associated with transmission efficiency (number of host individuals introduced, host body size, host sociality and parasite suborder) than parasite propagule pressure and aggregation. Such insights into parasite success are invaluable to both understanding and managing their impact. [source] Co-occurrence of ectoparasites of marine fishes: a null model analysisECOLOGY LETTERS, Issue 1 2002Nicholas J. Gotelli We used null model analysis to test for nonrandomness in the structure of metazoan ectoparasite communities of 45 species of marine fish. Host species consistently supported fewer parasite species combinations than expected by chance, even in analyses that incorporated empty sites. However, for most analyses, the null hypothesis was not rejected, and co-occurrence patterns could not be distinguished from those that might arise by random colonization and extinction. We compared our results to analyses of presence,absence matrices for vertebrate taxa, and found support for the hypothesis that there is an ecological continuum of community organization. Presence,absence matrices for small-bodied taxa with low vagility and/or small populations (marine ectoparasites, herps) were mostly random, whereas presence,absence matrices for large-bodied taxa with high vagility and/or large populations (birds, mammals) were highly structured. Metazoan ectoparasites of marine fishes fall near the low end of this continuum, with little evidence for nonrandom species co-occurrence patterns. [source] Composition and distribution of vascular epiphytes in a tropical semideciduous forest, GhanaAFRICAN JOURNAL OF ECOLOGY, Issue 4 2009Patrick Addo-Fordjour Abstract The composition and distribution of vascular epiphytes were studied in two 1-ha plots in the KNUST Botanic garden, Ghana. One-hectare plot each was randomly set up in secondary and cultivated forests for the identification and enumeration of trees and shrubs (,10 cm dbh), and epiphytes. Each tree was carefully examined, noting the presence, positions and life-forms of all epiphytes. Twenty-nine epiphyte (29) species belonging to fourteen genera and eleven families were identified in the study. These were hosted by 48 tree species and occurred in three life-forms: hemi-epiphytes (45%), casual epiphytes (45%) and true epiphytes (10%). The vascular epiphyte species made up 25.7% of all the identified plant species (excluding herbs and climbers) encountered. Host species (P < 0.001), habitat (P = 0.001) and their interaction (P < 0.001) had strong effects on epiphyte composition in the forests. Moraceae was the most dominant family (44.8%), while Nephrolepis undulata J. Sm. and N. biserrata (Sw.) Scott. were the commonest species of epiphytes. In terms of vertical distribution, most epiphytes were located on the trunk, while a few occurred in the canopy. Résumé On a étudié la composition et la distribution d'épiphytes vasculaires dans deux parcelles d'un hectare, dans le Jardin botanique de la KNUST, au Ghana. Chaque parcelle d'un hectare fut créée au hasard dans des forêts secondaire et cultivée pour y identifier et faire la liste des arbres et des arbustes (,10 cm dbh). Chaque arbre fut soigneusement examiné, et l'on a noté la présence, l'emplacement et les formes vivantes de tous les épiphytes. Vingt-neuf (29) espèces d'épiphytes appartenant à 14 genres et à 11 familles ont été identifiées au cours de cette étude. Elles croissaient sur 48 espèces d'arbres et se présentaient sous trois formes vivantes, hémi-épiphytes (45%), épiphytes opportunistes (45%) et épiphytes vrais (10%). Les espèces vasculaires d'épiphytes représentaient 25,7% de toutes les espèces végétales identifiées (à l'exclusion des herbacées et des plantes grimpantes). Les espèces hôtes (P < 0,001), l'habitat (P = 0,001) et leur interaction (P < 0,001) avaient un effet très net sur la composition des épiphytes dans les forêts. Les Moraceae étaient la famille dominante (44,8%) et Nephrolepis undulata J. Sm. et N. biserrata (Sw.) Scott étaient les espèces d'épiphytes les plus communes. En termes de distribution verticale, la plupart des épiphytes se situaient sur les troncs et quelques-uns croissaient dans la canopée. [source] Temporal fluctuation in abundance of Brown-headed Cowbirds and their hosts in riparian habitat in the Okanagan Valley, British Columbia, CanadaJOURNAL OF FIELD ORNITHOLOGY, Issue 4 2006Tawna C. Morgan ABSTRACT We tested the hypothesis that the abundance of Brown-headed Cowbirds (Molothrus ater) and their hosts, as well as parasitism rates, changed between 1992,1993 and 2001,2003 in riparian habitats in the Okanagan Valley, British Columbia, Canada, where riparian habitat has been reduced in area by more than 85% over the past 60 years. Cowbird abundance declined from a mean of 2.1 and 1.9 individuals per census plot in 1992 and 1993, respectively, to 0.66 individuals per plot in 2001,2002. The mean number of potential host individuals per census plot was also lower in 2001,2002 (5.5) than in 1992 (7.0) and 1993 (7.8). Although the percentage of Yellow Warbler (Dendroica petechia) nests parasitized declined (77% in 1992,1993 to 50% in 2002,2003), Yellow Warblers and Song Sparrows (Melospiza melodia) in the Okanagan Valley continue to be parasitized at high rates and have low nesting success. Host species and the distance of nests from the edge of nest patches were the strongest predictors of both nest success and parasitism, indicating the importance of large continuous patches of shrubs that allow nests to be located further from edges. SINOPSIS Se expuso a pruebas la hipótesis de la abundancia de tordos (Molothrus ater) y sus huespedes y como la tasa de parasitismo cambiaron durante el 1992,1993 y el 2001,2002 en un hábitat ripario en el valle Okanagan, Columbia Británica, Canada. En dicha localidad el hábitat ripario se redujo en un 85% en los últimos 60 años. La abundancia de tordos se redujo en un promedio de 2.1 y 1.9 de individuos/censo en 1992 y 1992, respectivamente, a 0.66 individuos en 2001,2002. El número promedio de hospederos potenciales por localidad censada (5.5) fue menor para el mismo periodo en comparación con el 1992 (7.0) y el 1993 (7.8). Aunque el porcentaje de nidos parasitados (77% en el 1992,1993 a 50% en 2002,2003) en Dendroica petechia, se redujo, tanto la especie como Melospiza melodia, tuvieron un alto grado de parasitismo y un bajo éxito de anidamiento. Tanto las especies hospederas y la distancia del nido al borde del parcho de anidamiento resultaron ser los elementos de predicción más fuertes con respecto al parasitismo y el éxito de anidamiento. Esto es un indicativo claro de la importancia de parchos de arbustos amplios y contínuos, que permitan el anidamiento lejos del borde. [source] Effects of Human Exclusion on Parasitism in Intertidal Food Webs of Central ChileCONSERVATION BIOLOGY, Issue 1 2005GÉRALDINE LOOT Fissurella crassa; intermareal rocoso; parasitismo; Proctoeces lintoni; reservas marinas Abstract:,Numerous ecological studies have demonstrated the dramatic effects that humans have on coastal marine ecosystems. Consequently, marine reserves have been established to preserve biodiversity. Recent reviews show that this strategy has paid off because inside reserves, most species have rapidly increased in size and abundance. Even though these studies focused on free-living organisms and paid little attention to parasite populations, numerous authors support the hypothesis that parasitism levels could be good indicators of ecosystem stability. We examined harvesting effects on the dynamics of a parasitic trematode ( Proctoeces lintoni) that completes its life cycle in intertidal mussels ( Perumytilus purpuratus), keyhole limpets (Fissurella crassa), and clingfish ( Sicyases sanguineus). All of these species are directly or indirectly affected by humans. Prevalence and abundance of the trematode P. lintoni in the three host species were compared in four study sites that differed in the intensity of human harvest. Parasitism infection in limpets and mussels was significantly higher in areas protected from human harvesting than in open-access areas, which suggests a significant change in parasite dynamics inside reserves. Yet the average parasitic biomass found in the gonads of F. crassa did not differ between protected and open-access areas. These results show, then, that the parasite system responded by increasing infection rates in marine protected areas without implication for reproductive success of the intermediate host. Our findings show that the indirect effects of harvesting by humans on the embedded parasite communities of littoral ecosystems require further scientific investigation. Resumen:,Numerosos estudios ecológicos han demostrado los efectos dramáticos de la actividad humana sobre ecosistemas marinos costeros. Consecuentemente, se han establecido las reservas marinas para preservar la biodiversidad. Revisiones recientes muestran que esta estrategia es adecuada porque la mayoría de las especies dentro de las reservas han incrementado en tamaño y abundancia rápidamente. Aunque, estos estudios se han concentrado en organismos de vida libre y han puesto poca atención a poblaciones de parásitos, numerosos autores apoyan la hipótesis de que los niveles de parasitismo pueden ser buenos indicadores de la estabilidad del ecosistema. Examinamos los efectos de pesquería artesanal sobre la dinámica de un trematodo parásito ( Proctoeces lintoni) que completa su ciclo de vida en mitíldos intermareales ( Perumytilus purpuratus), lapas ( Fissurella crassa) y Sicyases sanguineus, los cuales son afectados por humanos directa o indirectamente. La prevalencia y abundancia del trematodo P. lintoni en las tres especies de hospedadores fueron comparadas en cuatro sitios de estudio que difieren en la intensidad de recolecta por humanos. La infección parasitaria en lapas y mitíldos fue significativamente mayor en áreas protegidas que en áreas de libre acceso, lo que sugiere un cambio significativo en la dinámica del parásito dentro de las reservas, pero, la biomasa promedio de parásitos en gónadas de F. crassa no fue diferente entre áreas protegidas y de libre acceso. Por lo tanto, los resultados muestran que el sistema parásito respondió incrementando tasas de infección en áreas marinas protegidas sin consecuencias sobre el éxito reproductivo del ho spedador intermediario. Nuestros hallazgos muestran que se requiere más investigación científica de los efectos indirectos de los humanos sobre las comunidades de parásitos en ecosistemas litorales. [source] Are there general rules governing parasite diversity?DIVERSITY AND DISTRIBUTIONS, Issue 3 2007Small mammalian hosts, gamasid mite assemblages ABSTRACT Parasite biodiversity varies on several scales, and in particular among different host species. Previous attempts at finding relationships between host features and the diversity of the parasite assemblages they harbour have yielded inconsistent results, suggesting strongly that any patterns might be taxon-specific. Here, we examined the potential of three host characteristics (host body mass, basal metabolic rate, and area of the geographical range) as determinants of parasite diversity in one group of ectoparasites, gamasid mites (superfamily Dermanyssoidea), using data from 63 species of small mammalian hosts. Our analyses used three measures of parasite diversity (species richness, the Shannon diversity index, and average taxonomic distinctness), and controlled for sampling effort and phylogenetic influences. Although several significant relationships were observed, they depended entirely on which diversity measure was used, or on which host taxon was investigated (insectivores vs. rodents and lagomorphs). In addition, the present results on patterns of mite diversity were not consistent with those of an earlier study involving roughly the same host taxa and the same biogeographical area, but a different group of ectoparasites, i.e. fleas. Thus, there appears to be no universal determinant of parasite diversity, and associations between host features and parasite diversity probably evolve independently in different host,parasite systems. [source] Nested distributions of bat flies (Diptera: Streblidae) on Neotropical bats: artifact and specificity in host-parasite studiesECOGRAPHY, Issue 3 2009Bruce D. Patterson We examined the structure of ectoparasitic bat fly infestations on 31 well-sampled bat species, representing 4 Neotropical families. Sample sizes varied from 22 to 1057 bats per species, and bat species were infested by 4 to 27 bat fly species. Individual bats supported smaller infracommunities (the set of parasites co-occurring on an individual host), ranging from 1 to 5 fly species in size, and no bat species had more than 6 bat fly species characteristically associated with it (its primary fly species). Nestedness analyses used system temperature (BINMATNEST algorithm) because it is particularly well-suited for analysis of interaction networks, where parasite records may be nested among hosts and host individuals simultaneously nested among parasites. Most species exhibited very low system temperatures (mean 3.14°; range 0.14,12.28°). Simulations showed that nested structure for all 31 species was significantly stronger than simulated values under 2 of the 3 null hypotheses, and about half the species were also nested under the more stringent conditions of the third null hypothesis. Yet this structure disappears when analyses are restricted to "primary" associations of fly species (flies on their customary host species), which exclude records thought to be atypical, transient, or potential contaminants. Despite comprising a small fraction of total parasite records, such anomalies represent a considerable part of the statistical state-space, offering the illusion of significant ecological structure. Only well understood and well documented systems can make distinctions between primary and other occurrence records. Generally, nestedness appears best developed in host-parasite systems where infestations are long-term and accumulate over time. Dynamic, short-term infestations by highly mobile parasites like bat flies may appear to be nested, but such structure is better understood in terms of host specificity and accidental occurrences than in terms of prevalence, persistence, or hierarchical niche relations of the flies. [source] Parasite loads are higher in the tropics: temperate to tropical variation in a single host-parasite systemECOGRAPHY, Issue 4 2008Daniel J. Salkeld Parasites are important selective forces upon the evolutionary ecology of their hosts. At least one hypothesis suggests that high species diversity in the tropics is associated with higher parasite abundance in tropical climates. Few studies, however, have directly assessed whether parasite abundance is higher in the tropics. To address this question, it is ideal, although seldom achievable, to compare parasite abundance in a single species that occurs over a geographical area including both temperate and tropical regions. We examined variation in blood parasite abundance in seven populations of a single lizard host species (Eulamprus quoyii) using a transect that spans temperate and tropical climates. Parasite prevalence (proportion of the host population infected) showed no geographical pattern. Interestingly though, parasite load was higher in lizard populations in the tropics, and was related to mean annual temperature, but not to rainfall. We speculate that in this system the relationship between latitude and parasite load is most likely due to variation in host life history over their geographic range. [source] Aggregation and species coexistence in fleas parasitic on small mammalsECOGRAPHY, Issue 2 2006Boris R. Krasnov The aggregation model of coexistence states that species coexistence is facilitated if interspecific aggregation is reduced relative to intraspecific aggregation. We investigated the relationship between intraspecific and interspecific aggregation in 17 component communities (the flea assemblage of a host population) of fleas parasitic on small mammals and hypothesized that interspecific interactions should be reduced relative to intraspecific interactions, facilitating species coexistence. We predicted that the reduction of the level of interspecific aggregation in relation to the level of intraspecific aggregation would be positively correlated with total flea abundance and species richness of flea assemblages. We also expected that the higher degree of facilitation of flea coexistence would be affected by host parameters such as body mass, basal metabolic rate (BMR) and depth and complexity of burrows. Results of this study supported the aggregation model of coexistence and demonstrated that, in general, a) conspecific fleas were aggregated across their hosts; b) flea assemblages were not dominated by negative interspecific interactions; and c) the level of interspecific aggregation in flea assemblages was reduced in relation to the level of intraspecific aggregation. Intraspecific aggregation tended to be correlated positively to body mass, burrow complexity and mass-independent BMR of a host. Positive interspecific associations of fleas tended to occur more frequently in species-rich flea assemblages and/or in larger hosts possessing deep complex burrows. Intraspecific aggregation increased relative to interspecific aggregation when species richness of flea infracommunities (the flea assemblage of a host individual) and component communities increased. We conclude that the pattern of flea coexistence is related both to the structure of flea communities and affinities of host species. [source] Diversity and abundance patterns of phytophagous insect communities on alien and native host plants in the BrassicaceaeECOGRAPHY, Issue 6 2003Mark Frenzel The herbivore load (abundance and species richness of herbivores) on alien plants is supposed to be one of the keys to understand the invasiveness of species. We investigate the phytophagous insect communities on cabbage plants (Brassicaceae) in Europe. We compare the communities of endophagous and ectophagous insects as well as of Coleoptera and Lepidoptera on native and alien cabbage plant species. Contrary to many other reports, we found no differences in the herbivore load between native and alien hosts. The majority of insect species attacked alien as well as native hosts. Across insect species, there was no difference in the patterns of host range on native and on alien hosts. Likewise the similarity of insect communities across pairs of host species was not different between natives and aliens. We conclude that the general similarity in the community patterns between native and alien cabbage plant species are due to the chemical characteristics of this plant family. All cabbage plants share glucosinolates. This may facilitate host switches from natives to aliens. Hence the presence of native congeners may influence invasiveness of alien plants. [source] Variation in mistletoe seed deposition: effects of intra- and interspecific host characteristicsECOGRAPHY, Issue 2 2002Juliann Eve Aukema We investigated differences in host infection by a desert mistletoe, Phoradendron californicum, and examined one of the processes that contributes to these differences: variation in seed deposition among host individuals and species. In the Sonoran Desert, P. californicum parasitizes the sympatric leguminous trees Olneya tesota, Cercidium microphyllum, Prosopis velutina, Acacia constricta, and Acacia greggii. We hypothesized that seed deposition depends on host height and crown architecture. At a site in Arizona, frequency of infection did not reflect host relative abundance. Olneya tesota was parasitized at a higher frequency than expected from its abundance and maintained the highest mistletoe loads per individual host. In contrast, P. velutina was infected less frequently than expected. Infection frequency increased with host tree height for all hosts. Mistletoe seed deposition by avian dispersers differed among host species and was disproportionately high in O. tesota and P. velutina. Seed deposition was higher in infected than in non-infected host trees, and increased with tree height in O. tesota but not in C. microphyllum. We suspect that increased seed deposition with height in O. tesota may be due to the preference of seed-dispersing birds for higher perches. Some host tree species, such as C. microphyllum and A. constricta, probably received fewer mistletoe seeds because birds avoid hosts with dense and spiny crowns. Mistletoe populations are plant metapopulations in which host trees are patches and the frequency of infection in each host species/patch type is the result of interspecific differences in the balance between mistletoe colonization and extinction. From this perspective, our study of host use and seed dispersal is a metapopulation study of patch occupancy and propagule distribution among available patch types. Our seed-dispersal study demonstrates that the mechanisms that create pattern in patchy plant populations can be investigated in mistletoe systems. [source] An ecological law and its macroecological consequences as revealed by studies of relationships between host densities and parasite prevalenceECOGRAPHY, Issue 3 2001Per ArnebergArticle first published online: 30 JUN 200 Epidemiological models predict a positive relationship between host population density and abundance of macroparasites. Here I test these by a comparative study. I used data on communities of four groups of parasites inhabiting the gastrointestinal tract of mammals, nematodes of the orders Oxyurida, Ascarida, Enoplida and Spirurida, respectively. The data came from 44 mammalian species and represent examination of 16 886 individual hosts. I studied average prevalence of all nematodes within an order in a host species, a measure of community level abundance, and considered the potential confounding effects of host body weight, fecundity, age at maturity and diet. Host population density was positively correlated with parasite prevalence within the order Oxyurida, where all species have direct life cycles. Considering the effects of other variables did not change this. This supports the assumption that parasite transmission rate generally is a positive function of host population density. It also strengthens the hypothesis that host densities generally act as important determinants of species richness among directly transmitted parasites and suggests that negative influence of such parasites on host population growth rate increase with increasing host population density among host species. Within the other three nematode orders, where a substantial number of the species have indirect life cycles, no relationships between prevalence and host population density were seen. Again, considering the effects of other variables did not affect this conclusion. This suggests that host population density is a poor predictor of species richness of indirectly transmitted parasites and that effects of such parasites on host population dynamics do not scale with host densities among species of hosts. [source] Local host ant specificity of Phengaris (Maculinea) teleius butterfly, an obligatory social parasite of Myrmica antsECOLOGICAL ENTOMOLOGY, Issue 5 2010MAGDALENA WITEK 1. Phengaris butterflies are obligatory social parasites of Myrmica ants. Early research suggested that there is a different Myrmica host species for each of the five European Phengaris social parasites, but more recent studies have shown that this was an oversimplification. 2. The pattern of host ant specificity within a Phengaris teleius metapopulation from southern Poland is reported. A combination of studying the frequency distribution of Phengaris occurrence and morphometrics on adult butterflies were used to test whether use of different host species is reflected in larval development. 3. Phengaris teleius larvae were found to survive in colonies of four Myrmica species: M. scabrinodis, M. rubra, M. ruginodis, and M. rugulosa. Myrmica scabrinodis was the most abundant species under the host plant but the percentage of infested nests was similar to other host ant species at two sites and lower in comparison to nests of M. rubra and M. ruginodis at the other two sites. Morphometric measurements of adult butterflies reared by wild colonies of M. scabrinodis and M. ruginodis showed that wing size and number of wing spots were slightly greater for adults eclosing from nests of M. ruginodis. 4. Our results suggest that P. teleius in the populations studied is less specialised than previously suggested. The results are consistent with the hypothesis that P. teleius is expected to be the least specific of the European Phengaris species, as it has the largest and best defended fourth-instar caterpillars and, as a predatory species, it spends less time in the central larval chambers of the host colonies. The fact that individuals reared by M. ruginodis had wider hind wings may suggest that P. teleius had better access to resources in M. ruginodis than in M. scabrinodis colonies. [source] Vector within-host feeding preference mediates transmission of a heterogeneously distributed pathogenECOLOGICAL ENTOMOLOGY, Issue 3 2010MATTHEW P. DAUGHERTY 1. Ecological theory predicts that vector preference for certain host species or discrimination between infected versus uninfected hosts impacts disease incidence. However, little information exists on the extent to which vector within-host feeding preference mediates transmission. This may be particularly important for plant pathogens, such as sharpshooter transmission of the bacterium Xylella fastidiosa, which are distributed irregularly throughout hosts. 2. We documented the within-host distribution of two vector species that differ in transmission efficiency, the leafhoppers Draeculacephala minerva and Graphocephala atropunctata, and which are free to move throughout entirely caged alfalfa plants. The more efficient vector D. minerva fed preferentially at the base of the plant near the soil surface, whereas the less efficient G. atropunctata preferred overwhelming the top of the plant. 3. Next we documented X. fastidiosa heterogeneity in mechanically inoculated plants. Infection rates were up to 50% higher and mean bacterial population densities were 100-fold higher near the plant base than at the top or in the taproot. 4. Finally, we estimated transmission efficiency of the two leafhoppers when they were confined at either the base or top of inoculated alfalfa plants. Both vectors were inefficient when confined at the top of infected plants and were 20,60% more efficient when confined at the plant base. 5. These results show that vector transmission efficiency is determined by the interaction between leafhopper within-plant feeding behaviour and pathogen within-plant distribution. Fine-scale vector and pathogen overlap is likely to be a requirement generally for efficient transmission of vector-borne pathogens. [source] Effects of temperature and elevation on habitat use by a rare mountain butterfly: implications for species responses to climate changeECOLOGICAL ENTOMOLOGY, Issue 4 2009SARAH ASHTON Abstract 1.,The present study used the mountain specialist butterfly Parnassius apollo as a model system to investigate how climate change may alter habitat requirements for species at their warm range margins. 2.,Larval habitat use was recorded in six P. apollo populations over a 700 m elevation gradient in the Sierra de Guadarrama (central Spain). Larvae used four potential host species (Sedum spp.) growing in open areas amongst shrubs. 3.,Parnassius apollo host-plant and habitat use changed as elevation increased: the primary host shifted from Sedum amplexicaule to Sedum brevifolium, and larvae selected more open microhabitats (increased bare ground and dead vegetation, reduced vegetation height and shrub cover), suggesting that hotter microhabitats are used in cooler environments. 4.,Larval microhabitat selection was significantly related to ambient temperature. At temperatures lower than 27 °C, larvae occupied open microhabitats that were warmer than ambient temperature, versus more shaded microhabitats that were cooler than ambient conditions when temperature was higher than 27 °C. 5.,Elevational changes in phenology influenced the temperatures experienced by larvae, and could affect local host-plant favourability. 6.,Habitat heterogeneity appears to play an important role in P. apollo larval thermoregulation, and may become increasingly important in buffering populations of this and other insect species against climatic variation. [source] Structure and vertical stratification of plant galler,parasitoid food webs in two tropical forestsECOLOGICAL ENTOMOLOGY, Issue 3 2009MIGUEL R. PANIAGUA Abstract 1.,Networks of feeding interactions among insect herbivores and natural enemies such as parasitoids, describe the structure of these assemblages and may be critically linked to their dynamics and stability. The present paper describes the first quantitative study of parasitoids associated with gall-inducing insect assemblages in the tropics, and the first investigation of vertical stratification in quantitative food web structure. 2.,Galls and associated parasitoids were sampled in the understorey and canopy of Parque Natural Metropolitano in the Pacific forest, and in the understorey of San Lorenzo Protected Area in the Caribbean forest of Panama. Quantitative host,parasitoid food webs were constructed for each assemblage, including 34 gall maker species, 28 host plants, and 57 parasitoid species. 3.,Species richness was higher in the understorey for parasitoids, but higher in the canopy for gall makers. There was an almost complete turnover in gall maker and parasitoid assemblage composition between strata, and the few parasitoid species shared between strata were associated with the same host species. 4.,Most parasitoid species were host specific, and the few polyphagous parasitoid species were restricted to the understorey. 5.,These results suggest that, in contrast to better-studied leaf miner,parasitoid assemblages, the influence of apparent competition mediated by shared parasitoids as a structuring factor is likely to be minimal in the understorey and practically absent in the canopy, increasing the potential for coexistence of parasitoid species. 6.,High parasitoid beta diversity and high host specificity, particularly in the poorly studied canopy, indicate that tropical forests may be even more species rich in hymenopteran parasitoids than previously suspected. [source] Escape from natural enemies during climate-driven range expansion: a case studyECOLOGICAL ENTOMOLOGY, Issue 3 2008ROSA MENÉNDEZ Abstract 1.,A major, and largely unexplored, uncertainty in projecting the impact of climate change on biodiversity is the consequence of altered interspecific interactions, for example between parasitoids and their hosts. The present study investigated parasitism in the Brown Argus butterfly, Aricia agestis; a species that has expanded northward in Britain during the last 30 years in association with climate warming. 2.,Aricia agestis larvae suffered lower mortality from parasitoids in newly colonised areas compared with long-established populations. This result was consistent over four consecutive generations (2 years) when comparing one population of each type, and also when several populations within the historical and recently colonised range of the species were compared within a single year. Thus, A. agestis appears to be partially escaping from parasitism as it expands northwards. 3.,Reduced parasitism occurred despite the fact that several of the parasitoid species associated with A. agestis were already present in the newly colonised areas, supported predominantly by an alternative host species, the Common Blue butterfly, Polyommatus icarus. 4.,As the species expand their distributions into areas of increased climatic suitability, invasion fronts may escape from natural enemies, enhancing rates of range expansion. The results suggest that the decoupling of interspecific interactions may allow some species to exploit a wider range of environments and to do so more rapidly than previously thought possible. [source] Host specificity of ambrosia and bark beetles (Col., Curculionidae: Scolytinae and Platypodinae) in a New Guinea rainforestECOLOGICAL ENTOMOLOGY, Issue 6 2007JIRI HULCR Abstract 1.,Bark and ambrosia beetles are crucial for woody biomass decomposition in tropical forests worldwide. Despite that, quantitative data on their host specificity are scarce. 2.,Bark and ambrosia beetles (Scolytinae and Platypodinae) were reared from 13 species of tropical trees representing 11 families from all major lineages of dicotyledonous plants. Standardised samples of beetle-infested twigs, branches, trunks, and roots were taken from three individuals of each tree species growing in a lowland tropical rainforest in Papua New Guinea. 3.,A total of 81 742 beetles from 74 species were reared, 67 of them identified. Local species richness of bark and ambrosia beetles was estimated at 80,92 species. 4.,Ambrosia beetles were broad generalists as 95% of species did not show any preference for a particular host species or clade. Similarity of ambrosia beetle communities from different tree species was not correlated with phylogenetic distances between tree species. Similarity of ambrosia beetle communities from individual conspecific trees was not higher than that from heterospecific trees and different parts of the trees hosted similar ambrosia beetle communities, as only a few species preferred particular tree parts. 5.,In contrast, phloeophagous bark beetles showed strict specificity to host plant genus or family. However, this guild was poor in species (12 species) and restricted to only three plant families (Moraceae, Myristicaceae, Sapindaceae). 6.,Local diversity of both bark and ambrosia beetles is not driven by the local diversity of trees in tropical forests, since ambrosia beetles display no host specificity and bark beetles are species poor and restricted to a few plant families. [source] High host specificity of obligate ectoparasitesECOLOGICAL ENTOMOLOGY, Issue 5 2007CARL W. DICK Abstract 1.,Host specificity is the degree to which a parasite species occurs in association with a host species. 2.,The degree to which obligate ectoparasites are host specific has been debated, but effects of sampling contamination were usually not addressed. Data from a controlled mammal,ectoparasite survey were used to assess host specificity of an obligate group of ectoparasites , streblid bat flies. 3.,Host,parasite associations were categorised as primary or non-primary. Non-primary host associations were evaluated against primary associations via proportional comparison. 4.,Results indicate that host specificity was high, exceeding previous reports. Natural host transfers were rare. 5.,Non-primary host associations were almost completely explained by disturbance transfers during sampling of the host or by contamination upon sampling the parasite. These conclusions likely hold for other taxa of obligate parasites. [source] Variation among individual butterflies along a generalist,specialist axis: no support for the ,neural constraint' hypothesisECOLOGICAL ENTOMOLOGY, Issue 3 2007BRIAN WEE Abstract 1.,Degree of host specialisation was a continuous variable in a population of Edith's checkerspot butterfly (Euphydryas editha). A novel host, Collinsia torreyi, had been added to the diet in response to anthropogenic disturbance, and then abandoned prior to the current study. Butterflies either showed no preference or preferred their traditional host, Pedicularis semibarbata. 2.,Strength of preference for Pedicularis over Collinsia was measured in the field and used to estimate host specialisation of individual butterflies. Efficiency was estimated from the times taken by each insect to perform two tasks: (i) identification of a Pedicularis plant as a host, and (ii) successful initiation of oviposition after the decision to do so had been made. 3.,There was no clear trend for association between host specialisation and either measure of efficiency. Generalists were not slower than specialists at identifying Pedicularis as a host or at handling it after deciding to oviposit. 4.,Prior work indicated that generalists paid no detectable cost in terms of reduced discrimination among individuals of their preferred host species. 5.,In contrast to other species, generalist E. editha paid in neither time nor accuracy. Why then does the diet not expand? Behavioural adaptations to the traditional host caused maladaptations to the novel host and generated short-term constraints to evolutionary expansion of diet breadth. To date, however, no long-term constraints have been found in this system. In those traits investigated to date, increased adaptation to the novel host has not caused reduced adaptation to the traditional host. [source] Horizontal transmission of Wolbachia in a Drosophila communityECOLOGICAL ENTOMOLOGY, Issue 4 2005Eleanor R. Haine Abstract., 1.,Wolbachia bacteria are reproductive parasites of arthropods and infect an estimated 20% of all insect species worldwide. In order to understand patterns of Wolbachia infection, it is necessary to determine how infections are gained or lost. Wolbachia transmission is mainly vertical, but horizontal transmission between different host species can result in new infections, although its ecological context is poorly understood. Horizontal transmission is often inferred from molecular phylogenies, but could be confounded by recombination between different Wolbachia strains. 2.,This study addressed these issues by using three genes: wsp, ftsZ, and groE, to study Wolbachia infections in fruit- and fungus-feeding Drosophila communities in Berkshire, U.K. 3.,Identical sequences were found for all three genes in Drosophila ambigua and Drosophila tristis. This suggests horizontal transmission of Wolbachia between these two previously unstudied Drosophila species, which may be the result of the two host species sharing the same food substrates or parasites. 4.,Wolbachia infections might be lost from species due to curing by naturally occurring antibiotics and the presence of these is likely to vary between larval food substrates. 5.,It was investigated whether Wolbachia incidence was lower in fungus-feeding than in fruit-feeding Drosophila species, but no significant difference based on food substrate was found. [source] Oviposition preference and larval performance within a diverging lineage of lycaenid butterfliesECOLOGICAL ENTOMOLOGY, Issue 3 2004Matthew L. Forister Abstract. 1. The butterfly genus Mitoura in Northern California includes three nominal species associated with four host plants having parapatric or interdigitated ranges. Genetic analyses have shown the taxa to be very closely related, and adults from all host backgrounds will mate and produce viable offspring in the laboratory. Oviposition preference and larval performance were investigated with the aim of testing the hypothesis that variation in these traits can exist in a system in which non-ecological barriers to gene flow (i.e. geographic barriers and genetic incompatibilities) appear to be minimal. 2. Females were sampled from 12 locations throughout Northern California, including sympatric and parapatric populations associated with the four different host-plant species. Oviposition preference was assayed by confining wild-caught females with branches of all four host species and counting the number of eggs laid on each. Offspring were reared on the same host species and two measures of larval success were taken: per cent survival and pupal weight. 3. For populations associated with one of the hosts, incense cedar, the preference,performance relationship is simple: the host that females chose is the plant which results in the highest pupal weights for offspring. The preference,performance relationship for populations associated with the other hosts is more complex and may reflect different levels of local adaptation. The variation in preference and performance reported here suggests that these traits can evolve when non-ecological barriers to gene flow are low, and that differences in these traits may be important for the evolution of reproductive isolation within Mitoura. [source] The influence of host plant variation and intraspecific competition on oviposition preference and offspring performance in the host races of Eurosta solidaginisECOLOGICAL ENTOMOLOGY, Issue 1 2000Timothy P. Craig Summary 1. A series of experiments was conducted to measure the impact of plant genotype, plant growth rate, and intraspecific competition on the oviposition preference and offspring performance of the host races of Eurosta solidaginis (Diptera: Tephritidae), a fly that forms galls on Solidago altissima and Solidago gigantea (Asteraceae). Previous research has shown that both host races prefer to oviposit on their own host plant where survival is much higher than on the alternate host plant. In this study, neither host race showed any relationship between oviposition preference and offspring performance in choosing among plants of their natal host species. 2. The larval survival of both host races differed among plant genotypes when each host race oviposited on its natal host species. In one experiment, altissima host race females showed a preference among plant genotypes that was not correlated with offspring performance on those genotypes. In all other experiments, neither the altissima nor gigantea host race demonstrated a preference for specific host plant genotypes. 3. Eurosta solidaginis had a preference for ovipositing on rapidly growing ramets in all experiments, however larval survival was not correlated with ramet growth rate at the time of oviposition. 4. Eurosta solidaginis suffered high mortality from intraspecific competition in the early larval stage. There was little evidence, however, that females avoided ovipositing on ramets that had been attacked previously. This led to an aggregated distribution of eggs among ramets and strong intraspecific competition. 5. There was no interaction among plant genotype, plant growth rate, or intraspecific competition in determining oviposition preference or offspring performance. [source] Novel insect-tree associations resulting from accidental and intentional biological ,invasions': a meta-analysis of effects on insect fitnessECOLOGY LETTERS, Issue 4 2010Coralie Bertheau Ecology Letters (2010) 13: 506,515 Abstract The translocation of species beyond their native range is a major threat to biodiversity. Invasions by tree-feeding insects attacking native trees and the colonization of introduced trees by native insects result in new insect,tree relationships. To date there is uncertainty about the key factors that influence the outcome of these novel interactions. We report the results of a meta-analysis of 346 pairwise comparisons of forest insect fitness on novel and ancient host tree species from 31 publications. Host specificity of insects and phylogenetic relatedness between ancient and novel host trees emerged as key factors influencing insect fitness. Overall, fitness was significantly lower on novel host species than on ancient hosts. However, in some cases, fitness increased on novel hosts, mainly in polyphagous insects or when close relatives of ancient host trees were colonized. Our synthesis enables greatly improved impact prediction and risk assessment of biological invasions. [source] Four ways towards tropical herbivore megadiversityECOLOGY LETTERS, Issue 4 2008Thomas M. Lewinsohn Abstract Most multicellular species alive are tropical arthropods associated with plants. Hence, the host-specificity of these species, and their diversity at different scales, are keys to understanding the assembly structure of global biodiversity. We present a comprehensive scheme in which tropical herbivore megadiversity can be partitioned into the following components: (A) more host plant species per se, (B) more arthropod species per plant species, (C) higher host specificity of herbivores, or (D) higher species turnover (beta diversity) in the tropics than in the temperate zone. We scrutinize recent studies addressing each component and identify methodological differences among them. We find substantial support for the importance of component A, more tropical host species. A meta-analysis of published results reveals intermediate to high correlations between plant and herbivore diversity, accounting for up to 60% of the variation in insect species richness. Support for other factors is mixed, with studies too scarce and approaches too uneven to allow for quantitative summaries. More research on individual components is unlikely to resolve their relative contribution to overall herbivore diversity. Instead, we call for the adoption of more coherent methods that avoid pitfalls for larger-scale comparisons, for studies assessing different components together rather than singly, and for studies that investigate herbivore beta-diversity (component D) in a more comprehensive perspective. [source] Effects of parasitoid fecundity and host resistance on indirect interactions among hosts sharing a parasitoidECOLOGY LETTERS, Issue 6 2003George E. Heimpel Abstract We examine the effects of fecundity-limited attack rates and resistance of hosts to parasitism on the dynamics of two-host,one-parasitoid systems. We focus primarily on the situation where one parasitoid species attacks two host species that differ in their suitability for parasitism. While all eggs allocated to suitable hosts develop into adult parasitoids, some of the eggs allocated to marginal host do not develop. Marginal hosts can therefore act as a sink for parasitoid eggs. Three-species coexistence is favoured by low levels of parasitoid fecundity and by low levels of suitability of the marginal host. Our model also produces an indirect (+, ,) interaction in which the suitable host can benefit from the presence of the marginal host, but the marginal host suffers from the presence of the suitable host. The mechanism driving the indirect (+, ,) interaction is egg limitation of parasitoids incurred by allocating eggs to marginal hosts. [source] When random sampling does not work: standard design falsely indicates maladaptive host preferences in a butterflyECOLOGY LETTERS, Issue 1 2002Michael C. Singer In experiments that investigate species' interactions, individuals are often chosen at random to represent their populations. However, this practice can generate misleading results when individuals of different species do not interact at random. We illustrate this effect by examining oviposition preferences of Euphydryas aurinia butterflies from three populations using three different plant genera. We first offered each insect a randomly chosen member of its own host population and a foreign host (Succisa pratensis) not present in the insect's habitat. The butterflies uniformly preferred the foreign Succisa over their own hosts. Preferences were apparently maladaptive because insects wasted time searching for a nonexistent plant. We repeated the experiment using individual hosts that had naturally received eggs in the field. The overall preference for Succisa and the appearance of maladaptation both disappeared. In the original experiments, our random choice of experimental host individuals had combined with strong within-species discrimination by the butterflies and with overlap of acceptability between host species to obscure the true nature of host preference. [source] Competitive interactions and persistence of two nematode species that parasitize Drosophila recensECOLOGY LETTERS, Issue 6 2001S.J. Perlman Drosophila recens is parasitized in the wild by two nematodes, Howardula aoronymphium, a host generalist, and Parasitylenchus nearcticus, a host specialist known only from D. recens. In order to understand how these two parasite species coexist, we compared their ability to infect and grow in D. recens, their effects on host fecundity and survival, and whether one parasite species was competitively superior in double infections. The specialist nematode P. nearcticus had greater rates of infection and reproduction than the generalist H. aoronymphium, and completely sterilized females in single and mixed infections. The specialist was competitively superior in mixed infections, as generalist motherworms were significantly smaller than in single infections. These results suggest that P. nearcticus might competitively exclude H. aoronymphium if D. recens were the only host available. It is likely that H. aoronymphium persists in D. recens by transmission from other, more suitable host species. [source] Sequence-related amplified polymorphism, an effective molecular approach for studying genetic variation in Fasciola spp. of human and animal health significanceELECTROPHORESIS, Issue 2 2009Qiao-Yan Li Abstract In the present study, a recently described molecular approach, namely sequence-related amplified polymorphism (SRAP), which preferentially amplifies ORFs, was evaluated for the studies of genetic variation among Fasciola hepatica, Fasciola gigantica and the "intermediate" Fasciola from different host species and geographical locations in mainland China. Five SRAP primer combinations were used to amplify 120 Fasciola samples after ten SRAP primer combinations were evaluated. The number of fragments amplified from Fasciola samples using each primer combination ranged from 12 to 20, with an average of 15 polymorphic bands per primer pair. Fifty-nine main polymorphic bands were observed, ranging in size from 100 to 2000,bp, and SRAP bands specific to F. hepatica or F. gigantica were observed. SRAP fragments common to F. hepatica and the "intermediate" Fasciola, or common to F. gigantica and the "intermediate" Fasciola were identified, excised and confirmed by PCR amplification of genomic DNA using primers designed based on sequences of these SRAP fragments. Based on SRAP profiles, unweighted pair-group method with arithmetic averages clustering algorithm categorized all of the examined representative Fasciola samples into three groups, representing the F. hepatica, the "intermediate" Fasciola, or the F. gigantica. These results demonstrated the usefulness of the SRAP technique for revealing genetic variability between F. hepatica, F. gigantica and the "intermediate" Fasciola, and also provided genomic evidence for the existence of the "intermediate" Fasciola between F. hepatica and F. gigantica. This technique provides an alternative and a useful tool for the genetic characterization and studies of genetic variability in parasites. [source] Does mother really know best?ENTOMOLOGIA EXPERIMENTALIS ET APPLICATA, Issue 3 2005Oviposition preference reduces reproductive performance in the generalist parasitoid Aphidius ervi Abstract The reproductive success of female parasitoids is dependent on their ability to accurately assess the suitability of a host for larval development. For generalist parasitoids, which utilize a broad range of species and instars as hosts, a set of assessment criteria determines whether a host is accepted or rejected. The suitability of a host, however, can only be imperfectly assessed by the female parasitoid, which can result in the selection of lesser quality hosts for oviposition. In this study we explored the disparity between host quality and host preference using the generalist koinobiotic parasitoid Aphidius ervi Haliday (Hymenoptera: Aphidiidae) and the host Aulacorthum solani (Harris) (Homoptera: Aphididae), the foxglove aphid. The second instar hosts produced the highest level of reproductive success, while third and fourth instars resulted in a substantially reduced reproductive performance. When given a choice of host instars, parasitoids preferred the older hosts for oviposition disregarding their reduced suitability for larval development. Results are discussed in context of mechanisms involved in A. ervi host selection and biases in the criteria used to assess hosts that may arise when parasitoids transfer host species between generations. [source] |