Host Protection (host + protection)

Distribution by Scientific Domains


Selected Abstracts


Immune responses and host protection of channel catfish, Ictalurus punctatus (Rafinesque), against Ichthyophthirius multifiliis after immunization with live theronts and sonicated trophonts

JOURNAL OF FISH DISEASES, Issue 3 2004
D-H Xu
Abstract The humoral immune responses and host protection of channel catfish, Ictalurus punctatus (Rafinesque), against Ichthyophthirius multifiliis (Ich) were determined after immunization with live theronts and sonicated trophonts. Immunizations with live theronts or sonicated trophonts were carried out by both bath immersion and intraperitoneal (i.p.) injection. Cutaneous and serum immunoglobulin (Ig) levels and anti-Ich antibodies were measured 12 and 21 days post-immunization. The level of Ich infection and survival of catfish were determined after theront challenge. Cutaneous and serum anti-Ich antibodies were significantly higher (P < 0.05) in fish immunized with live theronts by immersion or i.p. injection, or with sonicated trophonts administered by i.p. injection, than in fish immunized with sonicated trophonts by immersion, with bovine serum albumin by i.p. injection, or non-immunized controls. Host protection was noted only in fish immunized with live theronts by immersion or i.p. injection or with sonicated trophonts by i.p. injection. There was a positive correlation between higher levels of anti-Ich antibodies and host survival in the immunized fish. [source]


Induced cross-protection in channel catfish, Ictalurus punctatus (Rafinesque), against different immobilization serotypes of Ichthyophthirius multifiliis

JOURNAL OF FISH DISEASES, Issue 3 2006
D-H Xu
Abstract Channel catfish, Ictalurus punctatus (Rafinesque), were immunized with Ichthyophthirius multifiliis (Ich) theronts and trophonts, and the immune response and host protection against both homologous and heterologous serotypes of Ich were evaluated. Immunizations were done with two immobilization serotypes (ARS4 and ARS6) of live theronts by bath immersion (trial I) and with sonicated trophonts by intraperitoneal (i.p.) injection (trial II). Cutaneous and serum antibody titres against Ich following immunization were measured and survival of catfish was determined after theront challenge. Theronts were immobilized by the antiserum from fish immunized with homologous theronts or trophonts, but not by the serum of fish immunized with the heterologous serotype. Serum from fish immunized by immersion with live theronts showed higher enzyme-linked immunosorbent assay titres against both homologous and heterologous serotypes than fish immunized by i.p. injection of trophonts. Channel catfish immunized by immersion with live theronts or by i.p. injection with sonicated trophonts developed an immune response against Ich and provided cross-protection against challenge from both serotypes (ARS4 and ARS6) of the parasite. Sonicated trophont antigens in aqueous solution by i.p. injection could stimulate an immune response in fish, but the immunity was of short duration. [source]


Immune responses and host protection of channel catfish, Ictalurus punctatus (Rafinesque), against Ichthyophthirius multifiliis after immunization with live theronts and sonicated trophonts

JOURNAL OF FISH DISEASES, Issue 3 2004
D-H Xu
Abstract The humoral immune responses and host protection of channel catfish, Ictalurus punctatus (Rafinesque), against Ichthyophthirius multifiliis (Ich) were determined after immunization with live theronts and sonicated trophonts. Immunizations with live theronts or sonicated trophonts were carried out by both bath immersion and intraperitoneal (i.p.) injection. Cutaneous and serum immunoglobulin (Ig) levels and anti-Ich antibodies were measured 12 and 21 days post-immunization. The level of Ich infection and survival of catfish were determined after theront challenge. Cutaneous and serum anti-Ich antibodies were significantly higher (P < 0.05) in fish immunized with live theronts by immersion or i.p. injection, or with sonicated trophonts administered by i.p. injection, than in fish immunized with sonicated trophonts by immersion, with bovine serum albumin by i.p. injection, or non-immunized controls. Host protection was noted only in fish immunized with live theronts by immersion or i.p. injection or with sonicated trophonts by i.p. injection. There was a positive correlation between higher levels of anti-Ich antibodies and host survival in the immunized fish. [source]


Role of the innate immune system in host defence against bacterial infections: focus on the Toll-like receptors

JOURNAL OF INTERNAL MEDICINE, Issue 6 2007
B. Albiger
Abstract. The innate immunity plays a critical role in host protection against pathogens and it relies amongst others on pattern recognition receptors such as the Toll-like receptors (TLRs) and the nucleotide-binding oligomerization domains proteins (NOD-like receptors, NLRs) to alert the immune system of the presence of invading bacteria. Since their recent discovery less than a decade ago, both TLRs and NLRs have been shown to be crucial in host protection against microbial infections but also in homeostasis of the colonizing microflora. They recognize specific microbial ligands and with the use of distinct adaptor molecules, they activate different signalling pathways that in turns trigger subsequent inflammatory and immune responses that allows a immediate response towards bacterial infections and the initiation of the long-lasting adaptive immunity. In this review, we will focus on the role of the TLRs against bacterial infections in humans in contrast to mice that have been used extensively in experimental models of infections and discuss their role in controlling normal flora or nonpathogenic bacteria. We also highlight how bacteria can evade recognition by TLRs. [source]


The critical role of type-1 innate and acquired immunity in tumor immunotherapy

CANCER SCIENCE, Issue 9 2004
Hiroaki Ikeda
The discovery of a large array of tumor antigens has demonstrated that host lymphocytes can indeed recognize and destroy tumor cells as originally proposed in the cancer immunosurveillance hypothesis. Recent reports that led to the cancer immuno-editing concept also strongly support the immunosurveillance hypothesis, and they further indicate that the host immune system plays a critical role not only in promoting host protection against cancer but also in selecting tumors that can better escape from immune attack. Thus, it is now clear that T cells have the ability to recognize and destroy spontaneously arising tumors. However, the generation of antitumor immunity is often difficult in the tumor-bearing host because of various negative regulatory mechanisms. Here, we review our recent work on tumor immunotherapy, which utilizes the activation of type-1 innate and/or acquired immunity as a potent strategy to overcome immunosuppression in the tumor-bearing host. We have established a variety of tumor therapeutic protocols that aim to activate type-1 immunity, such as tumor-vaccine therapy with CpG encapsulated in liposomes, cell therapy using tumor-specific Th1 cells, and gene therapy using gene-engineered Th1 cells. We found that CpG encapsulated in liposomes stimulated IL-12-producing DC and induced IFN-,-producing NK cells, NKT cells, and tumor-specific CTL. Th1 cell therapy was also shown to be beneficial for acceleration of APC/Th1 cell-cell interaction in the DLN, which was critical for inducing tumor-specific CTL at the tumor site. Therefore, we conclude that the activation of type-1 innate and acquired immunity is crucial for tumor immunotherapy in order to overcome strong immunosuppression in the tumor-bearing host. [source]


Multiple MyD88-dependent responses contribute to pulmonary clearance of Legionella pneumophila

CELLULAR MICROBIOLOGY, Issue 1 2009
Kristina A. Archer
Summary MyD88-dependent signalling is important for secretion of early inflammatory cytokines and host protection in response to Legionella pneumophila infection. Although toll-like receptor (TLR)2 contributes to MyD88-dependent clearance of L. pneumophila, TLR-independent functions of MyD88 could also be important. To determine why MyD88 is critical for host protection to L. pneumophila, the contribution of multiple TLRs and IL-18 receptor (IL-18R)-dependent interferon-gamma (IFN-,) production in a mouse was examined. Mice deficient for TLR5 or TLR9, or deficient for TLR2 along with either TLR5 or TLR9, were competent for controlling bacterial replication and had no apparent defects in cytokine production compared with control mice. MyD88-dependent production of IFN-, in the lung was mediated primarily by natural killer cells and required IL-18R signalling. Reducing IFN-, levels did not greatly affect the kinetics of L. pneumophila replication or clearance in infected mice. Additionally, IFN-,-deficient mice did not have a susceptibility phenotype as severe as the MyD88-deficient mice and were able to control a pulmonary infection by L. pneumophila. Thus, MyD88-dependent innate immune responses induced by L. pneumophila involve both TLR-dependent responses and IL-18R-dependent production of IFN-, by natural killer cells, and these MyD88-dependent pathways can function independently to provide host protection against an intracellular pathogen. [source]