Horizontal Direction (horizontal + direction)

Distribution by Scientific Domains


Selected Abstracts


Using an airgun array in a land reservoir as the seismic source for seismotectonic studies in northern China: experiments and preliminary results

GEOPHYSICAL PROSPECTING, Issue 4 2008
Yong Chen
ABSTRACT This paper reports the field setup and preliminary results of experiments utilizing an airgun array in a reservoir in north China for a seismotectonic study. Commonly used in offshore petroleum resource exploration, the airgun source was found to be more useful than a traditional explosive source for large-scale and long offset land seismic surveys. The airgun array, formed by four 1,500 in3 airguns (a total of 6,000 in3 in volume) was placed at a depth of 6,9 m into the reservoir to generate the pressure impulse. No direct evidence was found that the airgun source adversely affected the fish in the reservoir. The peak ground acceleration recorded on the top of the reservoir dam 100 m away was 17.8 gal in the horizontal direction; this is much less than the designed earthquake-resistance threshold of 125 gal for this dam. The energy for one shot of this airgun array is about 6.68 MJ, equivalent to firing a 1.7 kg explosive. The seismic waves generated by the airgun source were recorded by receivers of the regional seismic networks and a temporary wide-angle reflection and refraction profile formed by 100 short-period seismometers with the maximum source-receiver offset of 206 km. The seismic wave signature at these long-offset stations is equivalent to that generated by a traditional blast source in a borehole with a 1,000,2,000 kg explosive. Preliminary results showed clear seismic phases from refractions from the multi-layer crustal structures in the north China region. Forward modelling using numerical simulation confirms that the seismic arrivals are indeed from lower crustal interfaces. The airgun source is efficient, economical, environmentally friendly and suitable for being used in urbanized areas. It has many advantages over an explosive source for seismotectonic studies such as the high repeatability that is supreme for stacking to improve signal qualities. The disadvantage is that the source is limited to existing lakes or reservoirs, which may restrict experimental geometry. [source]


X-ray computed tomography of peat soils: measuring gas content and peat structure

HYDROLOGICAL PROCESSES, Issue 25 2008
Nicholas Kettridge
Abstract The potential of using X-ray computed tomography (CT) to (i) analyse individual biogenic gas bubbles entrapped within peats and (ii) produce reliable descriptors of peat structure is examined. Existing approaches used to study biogenic gas bubbles measure the gas content of volumes of peat many orders of magnitude larger than most bubbles, and are, therefore, of little use in helping to understand bubble dynamics. In many peatland studies, the description of peat structures is derived from only a few relatively basic metrics; principally the porosity, the bulk density, and the von Post humification scale. CT is applied to identify and quantitatively analyse the size, location and shape of individual gas bubbles entrapped during the saturation of a 200 cm3 sample of S. fuscum. 3421 gas bubbles were identified, ranging in size from 0·1 mm3 to 99·9 mm3. These gas bubbles were non-randomly distributed, clustered predominantly in the vertical plane. When analysing the peat structure, Sphagnum peat and water are shown to be indistinguishable within CT scans. Peat samples were therefore prepared prior to scanning by flushing the peat with lead (II) nitrate solution to increase the linear attenuation of the Sphagnum. Sphagnum stems and branches were analysed, producing metrics of the peat structure; including stem and branch lengths, radii and orientation. In a 100 cm3 sample of S. magellanicum, the length of all Sphagnum stems totalled 1·82 m, with an average radius of 0·65 mm. The Sphagnum stems and branches were both preferentially orientated in the horizontal direction. Copyright © 2008 John Wiley & Sons, Ltd. [source]


1-D numerical modelling of shallow flows with variable horizontal density

INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, Issue 11 2010
Feifei Zhang Leighton
Abstract A1-D numerical model is presented for vertically homogeneous shallow flows with variable horizontal density. The governing equations represent depth-averaged mass and momentum conservation of a liquid,species mixture, and mass conservation of the species in the horizontal direction. Here, the term ,species' refers to material transported with the liquid flow. For example, when the species is taken to be suspended sediment, the model provides an idealized simulation of hyper-concentrated sediment-laden flows. The volumetric species concentration acts as an active scalar, allowing the species dynamics to modify the flow structure. A Godunov-type finite volume scheme is implemented to solve the conservation laws written in a deviatoric, hyperbolic form. The model is verified for variable-density flows, where analytical steady-state solutions are derived. The agreement between the numerical predictions and benchmark test solutions illustrates the ability of the model to capture rapidly varying flow features over uniform and non-uniform bed topography. A parameter study examines the effects of varying the initial density and depth in different regions. Copyright © 2009 John Wiley & Sons, Ltd. [source]


Performance of the atomic and molecular physics beamline at the National Synchrotron Radiation Laboratory

JOURNAL OF SYNCHROTRON RADIATION, Issue 6 2006
Sisheng Wang
At the National Synchrotron Radiation Laboratory, The University of Science and Technology of China, an atomic and molecular physics beamline with an energy range of 7.5,124,eV has been constructed for studying the spectroscopy and dynamics of atoms, molecules and clusters. The undulator-based beamline, with a high-resolution spherical-grating monochromator (SGM), is connected to the atomic and molecular physics end-station. This end-station includes a main experimental chamber for photoionization studies and an additional multi-stage photoionization chamber for photoabsorption spectroscopy. A mid-photon flux of 5 × 1012,photons,s,1 and a high resolving power is provided by this SGM beamline in the energy range 7.5,124,eV. The size of the synchrotron radiation beam spot at the sample is about 0.5,mm in the vertical direction and 1.0,mm in the horizontal direction. Some experimental results of photoionization efficiency spectroscopy and photoabsorption spectroscopy of atoms and molecules are also reported. [source]


Suite of three protein crystallography beamlines with single superconducting bend magnet as the source

JOURNAL OF SYNCHROTRON RADIATION, Issue 6 2004
Alastair A. MacDowell
At the Advanced Light Source, three protein crystallography beamlines have been built that use as a source one of the three 6,T single-pole superconducting bending magnets (superbends) that were recently installed in the ring. The use of such single-pole superconducting bend magnets enables the development of a hard X-ray program on a relatively low-energy 1.9,GeV ring without taking up insertion-device straight sections. The source is of relatively low power but, owing to the small electron beam emittance, it has high brightness. X-ray optics are required to preserve the brightness and to match the illumination requirements for protein crystallography. This was achieved by means of a collimating premirror bent to a plane parabola, a double-crystal monochromator followed by a toroidal mirror that focuses in the horizontal direction with a 2:1 demagnification. This optical arrangement partially balances aberrations from the collimating and toroidal mirrors such that a tight focused spot size is achieved. The optical properties of the beamline are an excellent match to those required by the small protein crystals that are typically measured. The design and performance of these new beamlines are described. [source]


Measurement of the two-photon correlation of synchrotron radiation in the VUV region by a delay-time modulation technique

JOURNAL OF SYNCHROTRON RADIATION, Issue 4 2003
Yasuhiro Takayama
The two-photon correlation (second-order coherence) of synchrotron radiation in the VUV region ( = 55,eV) has been measured using a novel photon-counting method. A new technique has been developed to measure a small bunching effect by using a coincidence unit composed of a constant fraction discriminator, a time-to-amplitude converter (TAC), a single-channel analyzer (SCA) and two solid-state switches. The path of the circuit through which the stop signal for the TAC passes can be changed by a control voltage generated by a function generator, and the relative arrival time of two photons on condition that the output signal from the SCA appears is consequently changed. By modulating the arrival time and measuring the output rate from the SCA with a digital lock-in amplifier, an apparent bunching effect has been observed which is characteristic of the chaotic light. The electron-beam emittance in the horizontal direction was estimated as ,nm,rad by this experiment, and the value was consistent with the designed value of 36,nm,rad. [source]


Invertibility of Helmholtz operators for nonhomogeneous medias

MATHEMATICAL METHODS IN THE APPLIED SCIENCES, Issue 4 2010
Vladimir Rabinovich
Abstract The paper is devoted to the investigation of the Helmholtz operators (1) describing the propagation of acoustic waves in non-homogeneous space. We consider the operator A with a wave number k such that where k0 is a positive function, k± are complex constants with ,(k)>0. The Helmholtz operator A with such wave number describes the propagation of acoustic waves in the waveguides being no homogeneous layer between two absorbing half-space. We prove that the operator A has an inverse operator A - 1 bounded in the Hilbert space L2(,n). Our proof is based on the limit operators method. We also consider the construction of the inverse operator for the Helmholtz operator A, with the density , = ,(xn) depending on xn only and wave number k0 = k0(,x,, xn) depending on a small parameter ,>0 which characterizes the slowness of variation of the wave number in the horizontal direction. Copyright © 2009 John Wiley & Sons, Ltd. [source]


Third and fourth Stokes parameters in polarimetric passive microwave remote sensing of rough surfaces over layered media

MICROWAVE AND OPTICAL TECHNOLOGY LETTERS, Issue 12 2008
Leung Tsang
Abstract We consider the four Stokes parameters in microwave emission from a layered medium with the top interface being a rough surface. The rough surface varies in one horizontal direction so that azimuthal asymmetry exists in the 3-D problem. Dyadic Green's functions of multilayered media are used to formulate the surface integral equations. Periodic boundary conditions are used. The numerical results show that the presence of the layered media below the rough surface reduces the vertical and horizontal brightness temperatures. The interaction between the rough surface and the layered media also enhance the third and fourth Stokes parameters. In particular, the fourth Stokes parameter can be large for such geometrical configurations. Results show that the nonzero third and fourth Stokes parameters exist for all frequencies and are particularly large when the rough surface has large slope. © 2008 Wiley Periodicals, Inc. Microwave Opt Technol Lett 50: 3063,3069, 2008; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/mop.23892 [source]


Analysis of a Simple Test Device for Tribo-Electric Charging of Bulk Powders

PARTICLE & PARTICLE SYSTEMS CHARACTERIZATION, Issue 1-2 2009
upuk
Abstract We have developed a simple device to characterise the tribo-electric charging propensity of powders. A sample of around one gram of powder is shaken in a container by reciprocal strokes in a horizontal direction. The electric charge on the powder is quantified by a Faraday cup before and after shaking. In this paper, we analyse the operation of this simple test device by investigating the behaviour of ,-lactose monohydrate (,-LM), hydroxy propyl cellulose (HPC) and a 50 : 50 binary mixture (by mass) of these two powders with various container surfaces commonly used in the pharmaceutical industry. The experiments are carried out in controlled environmental conditions and using different shaking times and frequencies of 10, 20 and 30,Hz. The experimental results show that the saturated charge is independent of the shaking frequency. Furthermore adhered particles coating the inner surface of the shaking container decrease the net amount of charge generated by up to 50,%. [source]


Air,sea exchanges in the equatorial area from the EQUALANT99 dataset: Bulk parametrizations of turbulent fluxes corrected for airflow distortion

THE QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, Issue 610 2005
A. Brut
Abstract Turbulent fluxes of momentum, sensible heat and water vapour were calculated using both the eddy covariance (EC) and the inertial dissipation (ID) methods applied to data collected on board the research vessel La Thalassa during 40 days of the EQUALANT99 oceanographic campaign. The aim of this experiment was to establish accurate parametrizations of air,sea fluxes for the equatorial Atlantic area from a large dataset. However, the accuracy of turbulent fluxes measured aboard ships is strongly affected by the distortion of airflow patterns generated by obstacles such as the ship and mast. For the EQUALANT99 experiment, the effects of airflow distortion were estimated using physical simulations in a water channel. To reproduce the conditions of the campaign, a neutral boundary layer was simulated in the water channel and a detailed model of the ship La Thalassa was built. Correction coefficients for the mean wind speed were evaluated from these physical simulations. They show a dependence on both the azimuth angle of the flow (i.e. the horizontal direction of the flow with respect to the ship's longitudinal axis) and the angle of incidence of the wind. The correction for airflow distortion was applied to the measured wind speed and also included in the flux computation using the ID method. Compared with earlier studies which applied a single correction per flux sample, it appears that our results for the corrected transfer coefficients present greater dependence on neutral wind speed than the previous parametrizations; the method also shows encouraging results, with a decrease in the scatter of the transfer coefficients parametrization. However, the distortion could not be corrected for in the fluxes calculated using the EC method, because this technique integrates a wide range of turbulence scales for which the airflow distortion cannot be simulated in a water channel. Fluxes computed using the ID and EC methods are presented and compared in order to determine which method, in the configuration of the EQUALANT99 experiment, provides the best resulting transfer coefficients. According to the results, fluxes of momentum and latent heat computed by ID were better for deriving the drag and humidity coefficients. The EC method seemed better adapted to calculate sensible-heat fluxes than the ID method, although a high scatter remained on the Stanton neutral number. Copyright © 2005 Royal Meteorological Society [source]


Courtship dances in the flies of the genus lispe (Diptera: Muscidae): From the fly's viewpoint

ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY (ELECTRONIC), Issue 1 2006
Leonid Frantsevich
Abstract Two predatory fly species, Lispe consanguinea Loew, 1858 and L. tentaculata DeGeer, 1776, inhabit the supralittoral zone at the shore of a fresh-water reservoir. Both species look alike and possess similar "badges," reflective concave silvery scales on the face. Flies occupy different lek habitats. Males of the first species patrol the bare wet sand on the beach just above the surf. Males of the second species reside on the more textured heaps of algae and stones. Courtship and aggressive behaviour of males was video-recorded and analysed frame by frame. Visual stimuli provided by the conspecific partner were computed in the body-fixed space of a fly observer. Males of L. consanguinea perform long pedestrian dances of pendulating circular arcs (frequency 2 s,1, median radius 2.5 cm, linear velocity 0.130 m/s). Right and left side runs are equally probable. Circular runs are interrupted by standby intervals of average duration 0.35 s. The female views the male as a target covering 2 by 2 ommatidia, moving abruptly with the angular velocity over 200 °/s in a horizontal direction down the path of about 50° till the next standpoint. Dancing is evenly distributed around the female. On the contrary, the male fixates the image of the female within the narrow front sector (median ±10°); the target in his view has 6,7 times less angular velocity and angular span of oscillations, and its image in profile overlays 6,8 by 2 ommatidia. If the female walks, the male combines tracking with voluntary circular dances. Rival males circle about one another at a distance shorter than 15 mm, but not in close contact. Males of L. tentaculata are capable of similar circular courting dances, but do so rarely. Usually they try to mount any partner immediately. In the latter species, male combat consists of fierce wrestling. Flies of both species often walk sideward and observe the partner not in front but at the side. Arch. Insect Biochem. Physiol. 62:26,42, 2006. © 2006 Wiley-Liss, Inc. [source]


On the dynamics of a spherical scaffold in rotating bioreactors

BIOTECHNOLOGY & BIOENGINEERING, Issue 3 2003
L. E. S. Ramirez
Abstract We analyze the dynamics of a spherical scaffold in rotating bioreactors (or clinostats). The idealized clinostat environment consists of a purely rotational flow that is perpendicular to a gravitational field. We confirm through a detailed analytical study that lift effects considerably alter the position of the equilibrium point reached by the scaffolds in the (vertical) direction collinear to the gravitational field. This result holds for small particle and shear Reynolds numbers. Our analysis shows that the inertial lift effect is negligible in the horizontal direction. We show that for all rotations of practical interest, and for the range of particle Reynolds number smaller than unity, the vertical coordinate of the equilibrium point is strongly affected by consideration of lift effects. For light (heavy) particles, inclusion of lift in the formation forces the equilibrium position to be below (above) the horizontal plane that contains the axis of rotation. The equilibrium point for light particles is stable and therefore is observable experimentally. The equilibrium point for heavy particles is unstable. We also estimate the stress level applied to the scaffold and derive an algebraic expression that indicates that the stress level acting on the scaffold decreases with increasing shear Reynolds number. © 2003 Wiley Periodicals, Inc. Biotechnol Bioeng 84: 382,389, 2003. [source]


Synthesis and Characteristics of a Nonaggregating Tris(tetrathiafulvaleno)dodecadehydro[18]annulene

CHEMISTRY - A EUROPEAN JOURNAL, Issue 33 2006
Asbjørn Sune Andersson
Abstract A new tris(tetrathiafulvaleno)dodecadehydro[18]annulene with six peripheral n -hexyl substituents was prepared by oxidative Glaser,Hay cyclization of a corresponding diethynylated tetrathiafulvalene (TTF) precursor. The electronic properties of the neutral and oxidized species were studied by both UV/Vis absorption spectroscopy and electrochemistry. From these studies, it transpires that the strongly violet-colored macrocycle does not aggregate in solution to any significant degree, which was confirmed by 1H NMR spectroscopy. This reluctance towards aggregation contrasts that observed for related TTF,annulenes containing other peripheral substitutents. Oxidation of the TTF,annulene occurs in two three-electron steps as inferred from both the peak amplitudes and the spectroelectrochemical study. We find that the tris(TTF)-fused dehydro[18]annulene is more difficult to oxidize (by +0.20 V) than the silyl-protected diethynylated mono-TTF precursor. In contrast, the first vertical ionization energy calculated at the B3,LYP/6,311+G(2d,p) level for the parent tris(TTF)-fused dehydro[18]annulene devoid of peripheral hexyl substituents is in fact lower (by 0.44 eV). Moreover, the surface morphology of 1,d drop-cast on a mica substrate was investigated by atomic force microscopy (AFM). Crystalline domains with slightly different orientations were observed. The thickness of individual layers seen in the crystalline domains and the thickness of a monolayer obtained from a very dilute solution were determined to 1.8,1.9 nm. This thickness corresponds to the diameter of the macrocycle and the layers seen in the film are apparently formed when the molecules stack in the horizontal direction relative to the substrate. [source]


Seismic evaluation of 1940s asymmetric wood-frame building using conventional measurements and high-definition laser scanning

EARTHQUAKE ENGINEERING AND STRUCTURAL DYNAMICS, Issue 10 2009
Khalid M. Mosalam
Abstract This study presents results from shake table experiments of a wood-frame building conducted at the University of California, Berkeley. A 13.5-ft × 19.5-ft two-story wood-frame building representing San Francisco 1940s design of a residential building with a garage space on the first story (house-over-garage) was tested. The test building was subjected to scaled ground motion based on Los Gatos record from Loma Prieta 1989 earthquake. The strong motion time history was scaled to match design spectra of a site in Richmond district of San Francisco. The test results demonstrated the seismic vulnerability of the test building due to soft story mechanism and significant twisting when shaken in two horizontal directions. In addition to conventional instrumentation for measuring acceleration and position of selected points of the test building, high-definition laser scanning technology was employed to assess global and local anomalies of the building after the shake table tests. The analysis conducted in this study showed very good correlation between conventional data recorded from position transducers and the laser scans. These laser scans expanded limits of conventional data at discrete points and allowed analyzing the whole building after shaking. Copyright © 2009 John Wiley & Sons, Ltd. [source]


Uplift-restraining Friction Pendulum seismic isolation system

EARTHQUAKE ENGINEERING AND STRUCTURAL DYNAMICS, Issue 5 2006
Panayiotis C. Roussis
Abstract This paper extends the scope of seismic isolation by introducing an innovative uplift-restraining Friction Pendulum system. Termed the XY-FP isolator, the new isolation device consists of two orthogonal opposing concave beams interconnected through a sliding mechanism that permits tension to develop in the bearing, thereby preventing uplift. Owing to its distinct configuration, the XY-FP isolator possesses unique properties for a seismic isolator, including uplift restraint, decoupling of the bi-directional motion along two orthogonal directions, and capability of providing independent stiffness and energy dissipation along the principal horizontal directions of the bearing. The study concentrates on introducing the concept and establishing the underlying principles of operation of the new XY-FP isolator, formulating the mathematical model for the XY-FP isolator, and presenting its mechanical behaviour through a displacement-control testing program on a single XY-FP isolator. Copyright © 2005 John Wiley & Sons, Ltd. [source]


The effects of torsion and motion coupling in site response estimation

EARTHQUAKE ENGINEERING AND STRUCTURAL DYNAMICS, Issue 5 2003
Mohammad R. Ghayamghamian
Abstract Soil amplification characteristics are investigated using data from the Chibaken-Toho-Oki earthquake and its aftershocks recorded at Chiba dense array in Japan. The frequency-dependent amplification function of soil is calculated using uphole-to-downhole spectral ratio analysis, considering the horizontal components of shear wave. The identified spectral ratios consistently demonstrate the splitting of peaks in their resonance frequencies and low amplification values in comparison with a 1D model. The torsional behaviour and horizontal ground motion coupling are clarified as the reasons for these phenomena at the site. To prove the hypothesis, the torsional motion is directly evaluated using the data of the horizontal dense array in different depths at the site. The comparison between Fourier spectra of torsional motion and identified transfer functions reveals the peaks at the same frequencies. The wave equation including torsion and horizontal motion coupling is introduced and solved for the layered media by applying wave propagation theory. Using the developed model, the effects of torsional motion with horizontal motion coupling on soil transfer function are numerically examined. Splitting and low amplification at resonance frequencies are confirmed by the results of numerical analysis. Furthermore, the ground motion in two horizontal directions at the site is simulated using site geotechnical specification and optimizing the model parameters. The simulated and recorded motions demonstrate good agreement that is used to validate the hypothesis. In addition, the spectral density of torsional ground motions are compared with the calculated one and found to be well predicted by the model. Finally, the results are used to explain the overestimation of damping in back-calculation of dynamic soil properties using vertical array data in small strain level. Copyright © 2003 John Wiley & Sons, Ltd. [source]


Direction-dependent visual cortex activation during horizontal optokinetic stimulation (fMRI study)

HUMAN BRAIN MAPPING, Issue 4 2006
Sandra Bense
Abstract Looking at a moving pattern induces optokinetic nystagmus (OKN) and activates an assembly of cortical areas in the visual cortex, including lateral occipitotemporal (motion-sensitive area MT/V5) and adjacent occipitoparietal areas as well as ocular motor areas such as the prefrontal cortex, frontal, supplementary, and parietal eye fields. The aim of this functional MRI (fMRI) study was to investigate (1) whether stimulus direction-dependent effects can be found, especially in the cortical eye fields, and (2) whether there is a hemispheric dominance of ocular motor areas. In a group of 15 healthy subjects, OKN in rightward and leftward directions was visually elicited and statistically compared with the control condition (stationary target) and with each other. Direction-dependent differences were not found in the cortical eye fields, but an asymmetry of activation occurred in paramedian visual cortex areas, and there were stronger activations in the hemisphere contralateral to the slow OKN phase (pursuit). This can be explained by a shift of the mean eye position of gaze (beating field) in the direction of the fast nystagmus phases of approximately 2.6 degrees, causing asymmetrical visual cortex stimulation. The absence of a significant difference in the activation pattern of the cortical eye fields supports the view that the processing of eye movements in both horizontal directions is mediated in the same cortical ocular motor areas. Furthermore, no hemispheric dominance for OKN processing was found in right-handed volunteers. Hum Brain Mapp, 2005. © 2005 Wiley-Liss, Inc. [source]


Effect of spatial variability of cross-correlated soil properties on bearing capacity of strip footing

INTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS, Issue 1 2010
Sung Eun Cho
Abstract Geotechnical engineering problems are characterized by many sources of uncertainty. Some of these sources are connected to the uncertainties of soil properties involved in the analysis. In this paper, a numerical procedure for a probabilistic analysis that considers the spatial variability of cross-correlated soil properties is presented and applied to study the bearing capacity of spatially random soil with different autocorrelation distances in the vertical and horizontal directions. The approach integrates a commercial finite difference method and random field theory into the framework of a probabilistic analysis. Two-dimensional cross-correlated non-Gaussian random fields are generated based on a Karhunen,Loève expansion in a manner consistent with a specified marginal distribution function, an autocorrelation function, and cross-correlation coefficients. A Monte Carlo simulation is then used to determine the statistical response based on the random fields. A series of analyses was performed to study the effects of uncertainty due to the spatial heterogeneity on the bearing capacity of a rough strip footing. The simulations provide insight into the application of uncertainty treatment to geotechnical problems and show the importance of the spatial variability of soil properties with regard to the outcome of a probabilistic assessment. Copyright © 2009 John Wiley & Sons, Ltd. [source]


Sensitivity of Alpine snow cover to European temperature

INTERNATIONAL JOURNAL OF CLIMATOLOGY, Issue 10 2007
Michael Hantel
Abstract The number of days with snow cover at 268 Alpine climate stations in the winters of 1961,2000 has been investigated with respect to the mean winter temperature over Europe. The corresponding description, originally developed for Austria and recently applied to Switzerland, consists in fitting a logistic curve to the observed data. The slope of this curve, originally the hyperbolic tangent function, is interpreted as the sensitivity of the snow duration-temperature relationship. Here we first demonstrate with a physical-statistical model that the proper logistic curve is not the hyperbolic tangent, but the error function, generated through the pdf of the fluctuating temperature; the slope of this curve is inversely proportional to the standard deviation of temperature. Since the station temperature used for this local model is on a scale much too small for global climate models, we simulate, secondly, the temperature with the concept of the Alpine temperature: It is the spatial Taylor expansion of the seasonal European temperature in vertical and horizontal directions. This improved model yields, for the same Austrian and Swiss data, both a better fit and a slightly smaller sensitivity of the snow-temperature curve than the original hyperbolic model. Thirdly we apply our improved model to a considerably larger Alpine data set comprising also data from France, Germany, Italy and Slovenia and find a sensitivity of about , 0.33 ( ± 0.03) per degree warming. It is representative for the entire Alpine region and corresponds to a maximum reduction of the snow cover of 30 days in winter at a height of 700 m for 1° European warming. The implication is that the relation between the natural fluctuations of winter snow duration and European temperature may be an estimate for a trend of snow duration in case of a future European temperature trend. Copyright © 2007 Royal Meteorological Society [source]


Das Magnitude 8.8 Maule (Chile)-Erdbeben vom 27.

BAUTECHNIK, Issue 8 2010
Februar 2010, Ingenieuranalyse der Erdbebenschäden
Das Maule (Chile)-Erdbeben vom 27. Februar 2010 gehört zu den stärksten, weltweit jemals registrierten Erdbeben. Die Bruchzone erstreckt sich über eine Länge von 500 km und eine Breite von 100 km, so dass acht Millionen Einwohner Chiles von dem Erdbeben mehr oder weniger direkt von den Schütterwirkungen betroffen waren. Bilder von spektakulären Schadensfällen aus der ca. 330 km entfernten Hauptstadt prägten die internationale Berichterstattung. Das seismische Ereignis löste einen Tsunami aus, der verheerende Schäden an der Küste Chiles verursachte und auch an den Küsten Hawaiis noch deutlich wahrgenommen werden konnte. Die seismischen Bodenbewegungen wurden bis ins Nachbarland Argentinien verspürt. Die Stärke des Bebens und ereignisspezifische Besonderheiten waren Motivation, im Rahmen einer Erkundungsmission der Ingenieurgruppe der Deutschen TaskForce Erdbeben im betroffenen Gebiet die Bauwerksschäden aufzunehmen und ihre regionale Verteilung zu dokumentieren. In fünf temporär, mit Starkbeben-Sensoren instrumentierten Gebäuden konnten mehrere Nachbeben aufgezeichnet werden, deren Beschleunigungsamplituden für allgemeine Hochbauten in deutschen Erdbebengebieten von Interesse bzw. maßgeblich wären. Die vorliegenden Messdaten ermöglichen die Interpretation der realen Gebäudereaktion und können in Folgeuntersuchungen zur Kalibrierung analytischer Modelle herangezogen werden. Der Beitrag vermittelt einen Eindruck von den erdbebenbedingten Schäden und soll das Verhalten der typischen Bauweisen unter diesen extremen Einwirkungen aufzeigen, das vor Ort festgestellte geringe Schadensausmaß durch die Umsetzung von Baunormen und darin verankerten Bemessungskonzepten erklären und letztlich die Übertragbarkeit dieser Beobachtungen auf andere Erdbebenregionen hinterfragen. In einem Folgebeitrag [1] werden die Schäden aus dem Tsunami einer Ingenieuranalyse unterzogen und die wesentlichen Wirkungsmechanismen bzw. einfachen baulichen Schutzmaßnahmen herausgearbeitet. The Magnitude 8.8 Maule (Chile) Earthquake of February 27, 2010 , Engineering analysis of earthquake damage. The Maule (Chile) February 27, 2010 Earthquake is regarded as one of the strongest earthquakes ever recorded world-wide. The rupture zone reached a length of about 500 km and a width of about 100 km; almost 8 million inhabitants were directly affected by the consequences of the earthquake. Photos from spectacular failure cases in the Capital (330 km away) were documented across the world and dominated the international reporting. The seismic event triggered a tsunami which caused serious damage alongside the coastal border; the waves were observed in the far-distant Hawaii Islands, too. The seismic ground motions were felt in the neighboring country Argentina, as well. The strength of the earthquake and the event-specific characteristics motivated the "Engineering Group of the German Task Force for earthquake" to analyze the building damage and to document their regional distribution. Five multi-storey RC structures were temporarily equipped with Strong-Motion sensors. Several aftershocks could be recorded; the peak acceleration amplitudes were in a level which was of interest for buildings in highest zone of German earthquake regions. In a first attempt, the measurements are used to interpret the response of real buildings in both horizontal directions; in ongoing studies data are used for the calibration of analytical models. The paper provides an overview of the earthquake induced damages in several building types and its variation within different structural systems. Reasons of low to moderate observed damage will be discussed in close relation to the code development and the preferred design concepts. The application of observed effects and derived lessons to other seismic regions is critically reviewed. In a subsequent paper [1] the damage caused by the tsunami is investigated in more detail. The engineering analysis will include the currently used models for the impact description and will elaborate simple, but quite efficient measures of protection. [source]