Home About us Contact | |||
Horizontal Advection (horizontal + advection)
Selected AbstractsInteraction between wind-induced seiches and convective cooling governs algal distribution in a canyon-shaped reservoirFRESHWATER BIOLOGY, Issue 7 2007RAFAEL MARCÉ Summary 1. Wind is considered the dominant factor controlling phytoplankton distribution in lentic environments. In canyon-shaped reservoirs, wind tends to blow along the main axis generating internal seiches and advective water movements that jointly with biological features of algae can produce a heterogeneous phytoplankton distribution. Turbulence generated by wind stress and convection will also affect the vertical distribution of algae, depending on their sinking properties. 2. We investigated the vertical and horizontal distribution of phytoplankton during the stratification period in Sau Reservoir (NE Spain). Sites along the main reservoir axis were sampled every 4 h for 3 days, and profiles of chlorophyll- a and temperature were made using a fluorescent FluoroProbe, which can discriminate among the main algal groups. Convective and wind shear velocity scales, and energy dissipation were calculated from meteorological data, and simulation experiments were performed to describe non-measured processes, like vertical advection and sinking velocity of phytoplankton. 3. Wind direction changed from day to night, producing a diel thermocline oscillation and an internal seiche. Energy dissipation was moderate during the night, and mainly attributed to convective cooling. During the day the energy dissipation was entirely attributed to wind shear, but values indicated low turbulence intensity. 4. The epilimnetic algal community was mainly composed of diatoms and chlorophytes. Chlorophytes showed a homogeneous distribution on the horizontal and vertical planes. Diatom horizontal pattern was also homogeneous, because the horizontal advective velocities generated by wind forcing were not high enough to develop phytoplankton gradients along the reservoir. 5. Diatom vertical distribution was heterogeneous in space and time. Different processes dominated in different regions of the reservoir, due to the interaction between seiching and the daily cycle of convective-mediated turbulence. As the meteorological forcing followed a clear daily pattern, we found very different diatom sedimentation dynamics between day and night. Remarkably, these dynamics were asynchronous in the extremes of the seiche, implying that under the same meteorological forcing a diatom population can show contrasting sedimentation dynamics at small spatial scales (approximately 103 m). This finding should be taken into account when interpreting paleolimnological records from different locations in a lake. 6. Vertical distribution of non-motile algae is a complex process including turbulence, vertical and horizontal advection, variations in the depth of the mixing layer and the intrinsic sinking properties of the organisms. Thus, simplistic interpretations considering only one of these factors should be regarded with caution. The results of this work also suggest that diatoms can persist in stratified water because of a synergistic effect between seiching and convective turbulence. [source] Intraseasonal oscillations and the South China Sea summer monsoon onsetINTERNATIONAL JOURNAL OF CLIMATOLOGY, Issue 12 2005Wen Zhou Abstract This paper investigates the role of intraseasonal oscillations (ISOs) in the onset of the South China Sea summer monsoon (SCSSM). Two major components of ISO (10,20-day and 30,60-day modes) are identified. The coupling of these two intraseasonal modes during the pre-monsoon period of the SCSSM are investigated by examining the filtered outgoing longwave radiation (OLR), low-level circulation, apparent heat source and apparent moisture sink from October of a previous calendar year to September of a calendar year. The zonal and meridional propagations of the 10,20-day and 30,60-day modes are found to be different, which reflects their different roles in the establishment and development of the SCSSM. The northwestward propagation of the 10,20-day mode is associated with the weakening of the subtropical high over the western Pacific, while the northeastward propagation of the 30,60-day mode originates from convection over the equatorial Indian Ocean. A hypothesis is then proposed to explain the observed variabilities in the SCSSM onset. When the equatorial Indian Ocean exhibits a 30,60-day mode oscillation, an initially weak convection develops into a large convection band (or monsoon trough). Meanwhile, a convective disturbance of the 10,20-day mode is induced when this monsoon trough extends to the western Pacific. These two processes then collaborate to cause a weakening of the subtropical anticyclone over the South China Sea. Because the monsoon trough associated with the 30,60-day mode subsequently propagates northward into the Bay of Bengal (BOB), the induced vortex together with the 10,20-day westward-migrating convection from the equatorial western Pacific will substantially increase the effect of horizontal advection of moisture and heat, thus destabilizing the atmosphere and weakening the subtropical ridge there. Westerlies can then penetrate and prevail over the SCS region, and the SCSSM onset occurs. Copyright © 2005 Royal Meteorological Society. [source] Intraseasonal variability of the ocean , atmosphere coupling in the Gulf of Guinea during boreal spring and summerTHE QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, Issue S1 2010Gaëlle de Coëtlogon Abstract Statistical analyses of the satellite TMI sea-surface temperature (SST) and QuikSCAT surface winds in boreal spring and summer are performed to investigate the intraseasonal variability of air,sea interactions in the Gulf of Guinea. There, empirical orthogonal function decomposition shows the existence of peaks around 15 days, and their lagged cross-correlation the signature of an expected 5-day lag wind forcing and 3-day lag strong negative SST feedback. Lagged linear regressions are performed onto a reference SST index of the cold tongue northern front in the Gulf of Guinea. A cold SST anomaly covering the equatorial and coastal upwelling is forced after about one week by stronger-than-usual south-easterlies linked to the St Helena anticyclone, suggesting that intraseasonal variability in the Gulf of Guinea is connected to large-scale fluctuations in the South Atlantic. Within about 5°S and 5°N, two retroactions between SST and surface wind appear to dominate near-surface atmosphere conditions. When the wind leads the SST, stronger monsoonal winds north of 2°N are partly sustained by the developing SST anomaly and bring more humidity and rainfall toward the continent. When the SST leads the wind, a reversal of anomalous winds is observed mainly south of 2°N, closing a negative feedback loop with a biweekly periodicity. Eventually, further investigation with an ocean model emphasizes the contribution of the horizontal advection in shaping these intraseasonal SST signals. The contribution of vertical processes may also be important but was more difficult to estimate. Copyright © 2010 Royal Meteorological Society [source] Analytical models for the mean flow inside dense canopies on gentle hilly terrainTHE QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, Issue 634 2008D. Poggi Abstract Simplifications and scaling arguments employed in analytical models that link topographic variations to mean velocity perturbations within dense canopies are explored using laboratory experiments. Laser Doppler anemometry (LDA) measurements are conducted in a neutrally-stratified boundary-layer flow within a large recirculating flume over a train of gentle hills covered by a dense canopy. The hill and canopy configuration are such that the mean hill slope is small and the hill is narrow in relation to the canopy (H/L , 1 and Lc/L , 1, where H is the hill height, L the half-length, and Lc the canopy adjustment length-scale). The LDA data suggest that the often-criticized linearizations of the advective terms, turbulent-shear-stress gradients and drag force appear reasonable except in the deep layers of the canopy. As predicted by a previous analytical model, the LDA data reveal a recirculation region within the lower canopy on the lee slope. Adjusting the outer-layer pressure perturbations by a virtual ground that accounts for the mean streamline distortions induced by this recirculation zone improves this model's performance. For the velocity perturbations in the deeper layers of the canopy, a new analytical model, which retains a balance between mean horizontal advection, mean pressure gradient and mean drag force but neglects the turbulent-shear-stress gradient, is developed. The proposed model reproduces the LDA measurements better than the earlier analytical model, which neglected advection but retained the turbulent-shear-stress gradient in the lower layers of the canopy and near the hill top. This finding is consistent with the fact that the earlier model was derived for tall hills in which advection inside the canopy remains small. In essence, the newly-proposed model for the narrow hill studied here assumes that in the deeper layers of the canopy the spatial features of the mean flow perturbations around their background state can be approximated by the inviscid mean-momentum equation. We briefly discuss how to integrate all these findings with recent advances in canopy lidar remote-sensing measurements of general topography and canopy height. Copyright © 2008 Royal Meteorological Society [source] Role of nocturnal turbulence and advection in the formation of shallow cumulus over landTHE QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, Issue 628 2007Jordi Vilà-Guerau de Arellano Abstract Shallow cumuli over land are normally studied from a diurnal perspective. However, the thermodynamic vertical profiles of the morning transition may play an important role in setting up favourable conditions for the formation of shallow cumuli. In turn, these profiles are highly dependent on the evolution of the nocturnal boundary characteristics and of their layer aloft. By analysing thermodynamic profiles measured by radiosondes launched every three hours at four different stations, we are able to determine how horizontal advection and turbulent mixing modify the atmospheric stability and the differences in potential temperature and specific humidity at the interface between the atmospheric boundary layer and the layer above it. Two consecutive nights are studied. They show very similar boundary-layer development; but variations in the layer aloft by a low-level-jet advection event during the second night, and intense turbulent mechanical mixing, lead to the development of two diurnal boundary layers with very different characteristics: the first one clear, the second cloudy. To complete the observational study, we perform a sensitivity analysis using a mixed-layer model to examine the role of the morning initial conditions in the formation of shallow cumuli over land. The complexity and subtlety of the observed situation,namely, the interaction of a strongly-mixed nocturnal boundary layer and horizontal advection,make this case suitable for testing the capacity of mesoscale models to reproduce cloudy boundary layers that are largely dependent on conditions during the previous night. Copyright © 2007 Royal Meteorological Society [source] An objective definition of the Indian summer monsoon season and a new perspective on the ENSO,monsoon relationshipTHE QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, Issue 624 2007Prince K. Xavier The concept of an interannually varying Indian summer monsoon season is introduced here, considering that the duration of the primary driving of the Indian monsoon,the large-scale meridional gradient of the deep tropospheric heat source,may vary from one year to another. Onset (withdrawal) is defined as the day when the tropospheric heat source shifts from south to north (north to south). This physical principle leads to a new thermodynamic index of the seasonal mean monsoon. While the traditional measure of seasonal rainfall, averaged from 1 June to 30 September, indicates a breakdown of the ENSO,monsoon relationship in recent decades, it is argued that this breakdown is partly due to the inappropriate definition of a fixed monsoon season. With a new physically based definition of the seasonal mean, the ENSO,monsoon relationship has remained steady over the decades. El Niño (La Niña) events contract (expand) the season, and thus decrease (increase) the seasonal mean monsoon by setting up persistent negative (positive) tropospheric temperature (TT) anomalies over the southern Eurasian region. Thus, we propose a new pathway, whereby the Indian summer monsoon could be influenced by remote climatic phenomena via modification of TT over Eurasia. Diagnostics of the onset and withdrawal processes suggest that onset delay is due to the enhanced adiabatic subsidence that inhibits vertical mixing of sensible heating from warm landmass during the pre-monsoon months. On the other hand, the major factor that determines whether the withdrawal is early or late is the horizontal advective cooling. Most of the late (early) onsets and early (late) withdrawals are associated with El Niño (La Niña). This link between the ENSO and the monsoon is realized through vertical and horizontal advections associated with the stationary waves in the upper troposphere set up by the tropical ENSO heating. Copyright © 2007 Royal Meteorological Society [source] |