Honest Signalling (honest + signalling)

Distribution by Scientific Domains


Selected Abstracts


Proximate mechanisms of variation in the carotenoid-based plumage coloration of nestling great tits (Parus major L.)

JOURNAL OF EVOLUTIONARY BIOLOGY, Issue 1 2003
B. Tschirren
Abstract Many vertebrates use carotenoid-based signals in social or sexual interactions. Honest signalling via carotenoids implies some limitation of carotenoid-based colour expression among phenotypes in the wild, and at least five limiting proximate mechanisms have been hypothesized. Limitation may arise by carotenoid-availability, genetic constraints, body condition, parasites, or detrimental effects of carotenoids. An understanding of the relative importance of the five mechanisms is relevant in the context of natural and sexual selection acting on signal evolution. In an experimental field study with carotenoid supplementation, simultaneous cross-fostering, manipulation of brood size and ectoparasite load, we investigated the relative importance of these mechanisms for the variation in carotenoid-based coloration of nestling great tits (Parus major). Carotenoid-based plumage coloration was significantly related to genetic origin of nestlings, and was enhanced both in carotenoid-supplemented nestlings, and nestlings raised in reduced broods. We found a tendency for ectoparasite-induced limitation of colour expression and no evidence for detrimental effects of carotenoids on growth pattern, mortality and recruitment of nestlings to the local breeding population. Thus, three of the five proposed mechanisms can generate individual variation in the expression of carotenoid-based plumage coloration in the wild and thus could maintain honesty in a trait potentially used for signalling of individual quality. [source]


The evolution of floral scent: the influence of olfactory learning by insect pollinators on the honest signalling of floral rewards

FUNCTIONAL ECOLOGY, Issue 5 2009
Geraldine A. Wright
Summary 1.,The evolution of flowering plants has undoubtedly been influenced by a pollinator's ability to learn to associate floral signals with food. Here, we address the question of ,why' flowers produce scent by examining the ways in which olfactory learning by insect pollinators could influence how floral scent emission evolves in plant populations. 2.,Being provided with a floral scent signal allows pollinators to learn to be specific in their foraging habits, which could, in turn, produce a selective advantage for plants if sexual reproduction is limited by the income of compatible gametes. Learning studies with honeybees predict that pollinator-mediated selection for floral scent production should favour signals which are distinctive and exhibit low variation within species because these signals are learned faster. Social bees quickly learn to associate scent with the presence of nectar, and their ability to do this is generally faster and more reliable than their ability to learn visual cues. 3.,Pollinators rely on floral scent as a means of distinguishing honestly signalling flowers from deceptive ones. Furthermore, a pollinator's sensitivity to differences in nectar rewards can bias the way that it responds to floral scent. This mechanism may select for flowers that provide olfactory signals as an honest indicator of the presence of nectar or which select against the production of a detectable scent signal when no nectar is present. 4.,We expect that an important yet commonly overlooked function of floral scent is an improvement in short-term pollinator specificity which provides an advantage to both pollinator and plant over the use of a visual signal alone. This, in turn, impacts the evolution of plant mating systems via its influence on the species-specific patterns of floral visitation by pollinators. [source]


Territorial behaviour and immunity are mediated by juvenile hormone: the physiological basis of honest signalling?

FUNCTIONAL ECOLOGY, Issue 1 2009
Jorge Contreras-Garduņo
Summary 1The role of the juvenile hormone (JH) as a potential mediator in the trade-off between male,male competition and immune response has not been tested, but its study could reveal a potential mechanism that mediates resource allocation between these two traits. 2Controlling for body size, we tested whether males of the territorial damselfly Calopteryx virgo administrated with methoprene acid, an analog of the JH (JHa), compared to control males, increased their aggression and occupation time on territories but decreased their phenoloxidase (PO) activity (a key enzyme used during immune response after a bacterial challenge). We found an increase in aggression in JHa treated males compared to control males, but the opposite was found for PO activity. 3As fat load and muscle mass are also important traits during a contest, we tested whether JHa males compared to control males showed more fat and muscle content 2 h after JHa administration. Our results did not show a significant difference between both male groups, suggesting that JHa only increased aggression. 4These results and a review of other published articles, which have documented an effect of JH on a variety of functions in insects, suggest that JH may be a target of sexual selection: this hormone not only promotes the expression of secondary sexual characters but also seems condition-dependent and so its titers may indicate male condition. [source]


Honest olfactory ornamentation in a female-dominant primate

JOURNAL OF EVOLUTIONARY BIOLOGY, Issue 7 2010
M. BOULET
Abstract Sexual selection theory predicts that potential mates or competitors signal their quality to conspecifics. Whereas evidence of honest visual or vocal signals in males abounds, evidence of honest signalling via scent or by females is scarce. We previously showed that scent marks in male lemurs seasonally encode information about individual heterozygosity , a reliable predictor of immunocompetence and survivorship. As female lemurs dominate males, compete over resources, and produce sexually differentiated scent marks that likely evolved via direct selection, here we tested whether females also advertise genetic quality via olfactory cues. During the breeding season specifically, individual heterozygosity correlated negatively with the diversity of fatty acids (FAs) expressed in labial secretions and positively with the diversity of heavy FA esters. As odour,gene relationships predictive of health and survivorship emerged during a period critical to mate choice and female competition, we posit that genital scent marks function as honest olfactory ornaments in females. [source]