Histomorphometry

Distribution by Scientific Domains
Distribution within Medical Sciences

Kinds of Histomorphometry

  • bone histomorphometry
  • dynamic histomorphometry


  • Selected Abstracts


    A nonsecosteroidal vitamin D receptor ligand with improved therapeutic window of bone efficacy over hypercalcemia

    JOURNAL OF BONE AND MINERAL RESEARCH, Issue 6 2010
    Masahiko Sato
    Abstract Vitamin D3 analogues were shown to be beneficial for osteoporosis and other indications, but their narrow therapeutic window between efficacy and hypercalcemia has limited their clinical utility. A nonsecosteroidal, tissue-selective, orally bioavailable, vitamin D receptor (VDR) ligand was ascertained to be efficacious in bone while having modest calcemic effects in vivo. This compound (VDRM2) potently induced Retinoid X Receptor alpha (RXR)-VDR heterodimerization (EC50,=,7.1,±,1.6,nM) and induced osteocalcin promoter activity (EC50,=,1.9,±,1.6,nM). VDRM2 was less potent in inducing Ca2+ channel transient receptor potential cation channel, subfamily V, member 6 (TRPV6) expression (EC50,=,37,±,12,nM). VDRM2 then was evaluated in osteopenic ovariectomized (OVX) rats and shown to dose-dependently restore vertebral bone mineral density (BMD) from OVX to sham levels at 0.08,µg/kg per day. Hypercalcemia was observed at a dose of 4.6,µg/kg per day of VDRM2, suggesting a safety margin of 57 [90% confidence interval (CI) 35,91]. 1,,25-dihydroxyvitamin D3 [1,,25(OH)2D], ED71, and alfacalcidol restored BMD at 0.030, 0.0055, and 0.046,µg/kg per day, respectively, whereas hypercalcemia was observed at 0.22, 0.027, and 0.23,µg/kg per day, indicating a safety margin of 7.3, 4.9, and 5.0, respectively (90% CIs 4.1,13, 3.2,7.7, and 3.5,6.7, respectively). Histomorphometry showed that VDRM2 increased cortical bone area and stimulated the periosteal bone-formation rate relative to OVX at doses below the hypercalcemic dose. By contrast, ED71 increased the periosteal bone-formation rate only above the hypercalcemic dose. VDRM2 suppressed eroded surface on trabecular bone surfaces at normal serum calcium dosage levels, suggesting dual anabolic and antiresorptive activity. In summary, vitamin D analogues were more potent than VDRM2, but VDRM2 had a greater safety margin, suggesting possible therapeutic potential. © 2010 American Society for Bone and Mineral Research [source]


    Targeted Deletion of the Sclerostin Gene in Mice Results in Increased Bone Formation and Bone Strength,,

    JOURNAL OF BONE AND MINERAL RESEARCH, Issue 6 2008
    Xiaodong Li
    Abstract Introduction: Sclerosteosis is a rare high bone mass genetic disorder in humans caused by inactivating mutations in SOST, the gene encoding sclerostin. Based on these data, sclerostin has emerged as a key negative regulator of bone mass. We generated SOST knockout (KO) mice to gain a more detailed understanding of the effects of sclerostin deficiency on bone. Materials and Methods: Gene targeting was used to inactivate SOST and generate a line of SOST KO mice. Radiography, densitometry, ,CT, histomorphometry, and mechanical testing were used to characterize the impact of sclerostin deficiency on bone in male and female mice. Comparisons were made between same sex KO and wildtype (WT) mice. Results: The results for male and female SOST KO mice were similar, with differences only in the magnitude of some effects. SOST KO mice had increased radiodensity throughout the skeleton, with general skeletal morphology being normal in appearance. DXA analysis of lumbar vertebrae and whole leg showed that there was a significant increase in BMD (>50%) at both sites. ,CT analysis of femur showed that bone volume was significantly increased in both the trabecular and cortical compartments. Histomorphometry of trabecular bone revealed a significant increase in osteoblast surface and no significant change in osteoclast surface in SOST KO mice. The bone formation rate in SOST KO mice was significantly increased for trabecular bone (>9-fold) at the distal femur, as well as for the endocortical and periosteal surfaces of the femur midshaft. Mechanical testing of lumbar vertebrae and femur showed that bone strength was significantly increased at both sites in SOST KO mice. Conclusions:SOST KO mice have a high bone mass phenotype characterized by marked increases in BMD, bone volume, bone formation, and bone strength. These results show that sclerostin is a key negative regulator of a powerful, evolutionarily conserved bone formation pathway that acts on both trabecular and cortical bone. [source]


    Effect of Osteoblast-Targeted Expression of Bcl-2 in Bone: Differential Response in Male and Female Mice,

    JOURNAL OF BONE AND MINERAL RESEARCH, Issue 8 2005
    Alexander G Pantschenko
    Abstract Transgenic mice (Col2.3Bcl-2) with osteoblast-targeted human Bcl-2 expression were established. Phenotypically, these mice were smaller than their wildtype littermates and showed differential effects of the transgene on bone parameters and osteoblast activity dependent on sex. The net effect was an abrogation of sex differences normally observed in wildtype mice and an inhibition of bone loss with age. Ex vivo osteoblast cultures showed that the transgene had no effect on osteoblast proliferation, but decreased bone formation. Estrogen was shown to stimulate endogenous Bcl-2 message levels. These studies suggest a link between Bcl-2 and sex regulation of bone development and age-related bone loss. Introduction: Whereas Bcl-2 has been shown to be an important regulator of apoptosis in development, differentiation, and disease, its role in bone homeostasis and development is not well understood. We have previously showed that the induction of glucocorticoid-induced apoptosis occurred through a dose-dependent decrease in Bcl-2. Estrogen prevented glucocorticoid-induced osteoblast apoptosis in vivo and in vitro by preventing the decrease in Bcl-2 in osteoblasts. Therefore, Bcl-2 may be an important regulator of bone growth through mechanisms that control osteoblast longevity and function. Materials and Methods: Col2.3Bcl-2 mice were developed carrying a 2.3-kb region of the type I collagen promoter driving 1.8 kb of human Bcl-2 (hBcl-2). Tissue specific expression of hBcl-2 in immunoassays validated the transgenic animal model. Histomorphometry and DXA were performed. Proliferation, mineralization, and glucocorticoid-induced apoptosis were examined in ex vivo cultures of osteoblasts. The effect of estrogen on mouse Bcl-2 in ex vivo osteoblast cultures was assayed by RT-PCR and Q-PCR. Results and Conclusions: Two Col2.3Bcl-2 (tg/+) founder lines were established and appeared normal except that they were smaller than their nontransgenic wildtype (+/+) littermates at 1, 2, and 6 months of age, with the greatest differences at 2 months. Immunohistochemistry showed hBcl-2 in osteoblasts at the growth plate and cortical surfaces. Nontransgenic littermates were negative. Western blots revealed hBcl-2 only in type I collagen-expressing tissues. Histomorphometry of 2-month-old mice showed a significant decrease in tg/+ calvaria width with no significant differences in femoral trabecular area or cortical width compared with +/+. However, tg/+ males had significantly more trabecular bone than tg/+ females. Female +/+ mice showed increased bone turnover with elevated osteoblast and osteoclast parameters compared with +/+ males. Col2.3Bcl-2 mice did not show such significant differences between sexes. Male tg/+ mice had a 76.5 ± 1.5% increase in ObS/BS with no significant differences in bone formation rate (BFR) or mineral apposition rate (MAR) compared with male +/+ mice. Transgenic females had a significant 48.4 ± 0.1% and 20.1 ± 5.8% decrease in BFR and MAR, respectively, compared with +/+ females. Osteoclast and osteocyte parameters were unchanged. By 6 months, femurs from female and male +/+ mice had lost a significant amount of their percent of trabecular bone compared with 2-month-old mice. There was little to no change in femoral bone in the tg/+ mice with age. Ex vivo cultures of osteoblasts from +/+ and Col2.3Bcl-2 mice showed a decrease in mineralization, no effect on proliferation, and an inhibition of glucocorticoid-induced apoptosis in Col2.3Bcl-2 cultures. Estrogen was shown to increase mouse Bcl-2 transcript levels in osteoblast cultures of wildtype mice, supporting a role for Bcl-2 in the sex-related differences in bone phenotype regulated by estrogen. Therefore, Bcl-2 differentially affected bone phenotype in male and female transgenic mice, altered bone cell activity associated with sex-related differences, and decreased bone formation, suggesting that apoptosis is necessary for mineralization. In addition, Bcl-2 targeted to mature osteoblasts seemed to delay bone development, producing a smaller transgenic mouse compared with wildtype littermates. These studies suggest that expression of Bcl-2 in osteoblasts is important in regulating bone mass in development and in the normal aging process of bone. [source]


    Comparison Insight Bone Measurements by Histomorphometry and ,CT,

    JOURNAL OF BONE AND MINERAL RESEARCH, Issue 7 2005
    Daniel Chappard MD
    Abstract Morphometric analysis of 70 bone biopsies was done in parallel by ,CT and histomorphometry. ,CT provided higher results for trabecular thickness and separation because of the 3D shape of these anatomical objects. Introduction: Bone histomorphometry is used to explore the various metabolic bone diseases. The technique is done on microscopic 2D sections, and several methods have been proposed to extrapolate 2D measurements to the 3D dimension. X-ray ,CT is a recently developed imaging tool to appreciate 3D architecture. Recently the use of 2D histomorphometric measurements have been shown to provide discordant results compared with 3D values obtained directly. Material and Methods: Seventy human bone biopsies were removed from patients presenting with metabolic bone diseases. Complete bone biopsies were examined by ,CT. Bone volume (BV/TV), Tb.Th, and Tb.Sp were measured on the 3D models. Tb.Th and Tb.Sp were measured by a method based on the sphere algorithm. In addition, six images were resliced and transferred to an image analyzer: bone volume and trabecular characteristics were measured after thresholding of the images. Bone cores were embedded undecalcified; histological sections were prepared and measured by routine histomorphometric methods providing another set of values for bone volume and trabecular characteristics. Comparison between the different methods was done by using regression analysis, Bland-Altman, Passing-Bablock, and Mountain plots. Results: Correlations between all parameters were highly significant, but ,CT overestimated bone volume. The osteoid volume had no influence in this series. Overestimation may have been caused by a double threshold used in ,CT, giving trabecular boundaries less well defined than on histological sections. Correlations between Tb.Th and Tb.Sp values obtained by 3D or 2D measurements were lower, and 3D analysis always overestimated thickness by ,50%. These increases could be attributed to the 3D shape of the object because the number of nodes and the size of the marrow cavities were correlated with 3D values. Conclusion: In clinical practice, ,CT seems to be an interesting method providing reliable morphometric results in less time than conventional histomorphometry. The correlation coefficient is not sufficient to study the agreement between techniques in histomorphometry. The architectural descriptors are influenced by the algorithms used in 3D. [source]


    ,-Arrestin2 Regulates the Differential Response of Cortical and Trabecular Bone to Intermittent PTH in Female Mice,

    JOURNAL OF BONE AND MINERAL RESEARCH, Issue 4 2005
    Mary L Bouxsein PhD
    Abstract Cytoplasmic arrestins regulate PTH signaling in vitro. We show that female ,-arrestin2,/, mice have decreased bone mass and altered bone architecture. The effects of intermittent PTH administration on bone microarchitecture differed in ,-arrestin2,/, and wildtype mice. These data indicate that arrestin-mediated regulation of intracellular signaling contributes to the differential effects of PTH at endosteal and periosteal bone surfaces. Introduction: The effects of PTH differ at endosteal and periosteal surfaces, suggesting that PTH activity in these compartments may depend on some yet unidentified mechanism(s) of regulation. The action of PTH in bone is mediated primarily by intracellular cAMP, and the cytoplasmic molecule ,-arrestin2 plays a central role in this signaling regulation. Thus, we hypothesized that arrestins would modulate the effects of PTH on bone in vivo. Materials and Methods: We used pDXA, ,CT, histomorphometry, and serum markers of bone turnover to assess the skeletal response to intermittent PTH (0, 20, 40, or 80 ,g/kg/day) in adult female mice null for ,-arrestin2 (,-arr2,/,) and wildtype (WT) littermates (7-11/group). Results and Conclusions: ,-arr2,/, mice had significantly lower total body BMD, trabecular bone volume fraction (BV/TV), and femoral cross-sectional area compared with WT. In WT females, PTH increased total body BMD, trabecular bone parameters, and cortical thickness, with a trend toward decreased midfemoral medullary area. In ,-arr2,/, mice, PTH not only improved total body BMD, trabecular bone architecture, and cortical thickness, but also dose-dependently increased femoral cross-sectional area and medullary area. Histomorphometry showed that PTH-stimulated periosteal bone formation was 2-fold higher in ,-arr2,/, compared with WT. Osteocalcin levels were significantly lower in ,-arr2,/, mice, but increased dose-dependently with PTH in both ,-arr2,/, and WT. In contrast, whereas the resorption marker TRACP5B increased dose-dependently in WT, 20-80 ,g/kg/day of PTH was equipotent with regard to stimulation of TRACP5B in ,-arr2,/,. In summary, ,-arrestin2 plays an important role in bone mass acquisition and remodeling. In estrogen-replete female mice, the ability of intermittent PTH to stimulate periosteal bone apposition and endosteal resorption is inhibited by arrestins. We therefore infer that arrestin-mediated regulation of intracellular signaling contributes to the differential effects of PTH on cancellous and cortical bone. [source]


    Recombinant Human Parathyroid Hormone (1,34) [Teriparatide] Improves Both Cortical and Cancellous Bone Structure

    JOURNAL OF BONE AND MINERAL RESEARCH, Issue 11 2003
    Yebin Jiang MD
    Abstract Histomorphometry and ,CT of 51 paired iliac crest biopsy specimens from women treated with teriparatide revealed significant increases in cancellous bone volume, cancellous bone connectivity density, cancellous bone plate-like structure, and cortical thickness, and a reduction in marrow star volume. Introduction: We studied the ability of teriparatide (rDNA origin) injection [rhPTH(1,34), TPTD] to improve both cancellous and cortical bone in a subset of women enrolled in the Fracture Prevention Trial of postmenopausal women with osteoporosis after a mean treatment time of 19 months. This is the first report of a biopsy study after treatment with teriparatide having a sufficient number of paired biopsy samples to provide quantitative structural data. Methods: Fifty-one paired iliac crest bone biopsy specimens (placebo [n = 19], 20 ,g teriparatide [n = 18], and 40 ,g teriparatide [n = 14]) were analyzed using both two-dimensional (2D) histomorphometry and three-dimensional (3D) microcomputed tomography (,CT). Data for both teriparatide treatment groups were pooled for analysis. Results and Conclusions: By 2D histomorphometric analyses, teriparatide significantly increased cancellous bone volume (median percent change: teriparatide, 14%; placebo, ,24%; p = 0.001) and reduced marrow star volume (teriparatide, ,16%; placebo, 112%; p = 0.004). Teriparatide administration was not associated with osteomalacia or woven bone, and there were no significant changes in mineral appositional rate or wall thickness. By 3D cancellous and cortical bone structural analyses, teriparatide significantly decreased the cancellous structure model index (teriparatide, ,12%; placebo, 7%; p = 0.025), increased cancellous connectivity density (teriparatide, 19%; placebo, ,14%; p = 0.034), and increased cortical thickness (teriparatide, 22%; placebo, 3%; p = 0.012). These data show that teriparatide treatment of postmenopausal women with osteoporosis significantly increased cancellous bone volume and connectivity, improved trabecular morphology with a shift toward a more plate-like structure, and increased cortical bone thickness. These changes in cancellous and cortical bone morphology should improve biomechanical competence and are consistent with the substantially reduced incidences of vertebral and nonvertebral fractures during administration of teriparatide. [source]


    Long-Term Dosing of Arzoxifene Lowers Cholesterol, Reduces Bone Turnover, and Preserves Bone Quality in Ovariectomized Rats,,

    JOURNAL OF BONE AND MINERAL RESEARCH, Issue 12 2002
    Yanfei L. Ma M.D.
    Abstract Long-term effects of a new selective estrogen receptor modulator (SERM) arzoxifene were examined in ovariectomized (OVX) rats. Arzoxifene was administered postoperatively (po) at 0.1 mg/kg per day or 0.5 mg/kg per day to 4-month-old rats, starting 1 week after OVX for 12 months. At study termination, body weights for arzoxifene groups were 16,17% lower than OVX control, which was caused by mainly reduced gain of fat mass. Longitudinal analysis of the proximal tibial metaphysis (PTM) by computed tomography (CT) at 0, 2, 4, 6, 9, and 12 months showed that OVX induced a 22% reduction in bone mineral density (BMD) at 2 months, which narrowed to a 12% difference between sham-operated (sham) and OVX rats by 12 months. Both doses of arzoxifene prevented the OVX-induced decline in BMD. Histomorphometry of the PTM showed that arzoxifene prevented bone loss by reducing osteoclast number in OVX rats. Arzoxifene maintained bone formation indices at sham levels and preserved trabecular number above OVX controls. Micro-CT analysis of lumbar vertebrae showed similar preservation of BMD compared with OVX, which were not different from sham. Compression testing of the vertebra and three-point bending testing of femoral shaft showed that strength and toughness were higher for arzoxifene-treated animals compared with OVX animals. Arzoxifene reduced serum cholesterol by 44,59% compared with OVX. Uteri wet weight from arzoxifene animals was 38,40% of sham compared with OVX rats, which were 29% of sham. Histology of the uterine endometrium showed that cell heights from both doses of arzoxifene were not significantly different from OVX controls. In summary, treatment of OVX rats with arzoxifene for nearly one-half of a lifetime maintained beneficial effects on cholesterol and the skeleton. These data suggest that arzoxifene may be a useful therapeutic agent for osteoporosis in postmenopausal women. [source]


    Histomorphometry of brain tumours

    NEUROPATHOLOGY & APPLIED NEUROBIOLOGY, Issue 4 2004
    R. Nafe
    In this review, the results of previous histomorphometric studies of brain tumours are summarized and discussed with respect to their potential value for diagnostic purposes and for tumour research. In the majority of these studies, human gliomas were investigated. In a few studies, human meningiomas and other human or experimental tumour types were investigated. A computerized image analysis system was used for the morphometric analyses in most studies. The three main histologic structures examined were tumour cell nuclei, nucleolar organizer regions and tumour vessels. The current state of knowledge provides evidence that a diagnostic benefit could be provided by histomorphometric investigations of brain tumours, especially for grading of gliomas and with respect to independent prognostic information. Additional studies are necessary to delineate the spectrum of histomorphometric parameters and the investigation of their prognostic significance for cases with the same tumour type and tumour grade. Together with many recently published observations in this field, this review shows that histomorphometry is an important approach towards the investigation of brain tumour biology. [source]


    Linear Radiofrequency Microcatheter Ablation Guided by Phased Array Intracardiac Echocardiography Combined with Temperature Decay

    PACING AND CLINICAL ELECTROPHYSIOLOGY, Issue 12 2009
    DAVID KEANE M.D., Ph.D.
    Background:Fluoroscopy-guided catheter placement is limited in its ability to determine electrode-endocardial contact and involves radiation exposure. We hypothesized that (1) intracardiac echocardiography (ICE) would provide superior assessment of linear electrode contact compared to fluoroscopy and (2) slow temperature decay upon discontinuation of the radiofrequency current (time for temperature to fall 90% after a 10-second test application of the radiofrequency current T90) would indicate optimal electrode-myocardial contact. Methods:Sixty endocardial lesions were created in the atria and ventricles of six goats by simultaneous delivery of the radiofrequency current through two linear electrodes of a microcatheter with a central interelectrode thermocouple. Catheter placement was guided by fluoroscopy. A 7.5-MHz ICE transducer in the right atrium or ventricle assessed electrode contact. T90 and previously reported parameters of electrode contact and lesion formation were recorded. Histomorphometry was performed on the lesions. Results:T90 was 4.27 ± 4.98 seconds. Lesion depth significantly correlated with ICE assessment of electrode contact (r = 0.56, P = 0.001); T90 upon radiofrequency current offset (r = 0.48, P = 0.008), impedance fall upon radiofrequency current onset (r = 0.37, P = 0.008), bipolar pacing threshold preablation (r =,0.56, P = 0.001), bipolar electrogram amplitude preablation (r = 0.43, P = 0.02), but not with fluoroscopic assessment of the electrode contact (r = 0.18, n.s.). For the prediction of achieving a lesion depth of >2 mm, a T90 of >4.0 seconds yielded a specificity of 86% and a sensitivity of 52%, ICE yielded a specificity and sensitivity of 58% and 68%, respectively, while the specificity and sensitivity of fluoroscopy were 26% and 68%, respectively. Both ICE and T90 provide additional clinical relevance during guidance of cardiac microcatheter ablation. [source]


    Noninvasive estimation of bone mass in ancient vertebrae

    AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY, Issue 2 2004
    E. Gonzalez-Reimers
    Abstract Histomorphometry is useful in the assessment of trabecular bone mass (TBM), and thus, in the estimation of the prevalence and intensity of osteopenia in ancient population groups. However, it is a destructive method. It is therefore necessary to explore the accuracy of nondestructive approaches, such as radiography, bone mineral density (BMD) assessed by double-energy X-ray absorptiometry (DEXA), bone density (BD), or optical density (OD) in the diagnosis of osteopenia. We selected 51 vertebrae out of a total sample composed of 333 T12, L1, and L2 vertebrae belonging to adult pre-Hispanic inhabitants from El Hierro. These vertebrae underwent histomorphometrical analysis, a fine-grained film radiography with assessment of trabecular pattern following standard methods, OD, DEXA-assessed BMD, and BD. The presence of biconcave vertebrae and wedge-shaped vertebrae was also assessed by measuring anterior height (a), posterior height (p), and height at the middle point of the vertebral body (m), and further calculating the indices 2m/(a + p) ("spine score") and a/p. Significant correlations were observed between TBM and BMD (r = 0.43), TBM and BD (r = 0.49), TBM and OD (r = 0.52), BMD and OD (r = 0.51), and BMD and BD (r = 0.36), but not between TBM and the indices 2m/(a + p) and a/p. In the stepwise multiple correlation analysis between TBM and BMD, BD, and OD, OD entered into first place and BD into second place, whereas BMD became displaced; the multiple correlation coefficient was 0.63, with a standard error of 3.78. A BMD greater than 0.60 g/cm2, or a bone density greater than 0.60 g/cm3, excluded osteopenia (TBM <15%) with a specificity greater than 90%, whereas a BMD value less than 0.35 g/cm2, a BD less than 0.35 g/cm3, or optical density >1.6 excluded a normal bone mass (TBM >20%) with a specificity greater than 90%. Based on radiographic criteria on the total sample, we also conclude that the overall prevalence of vertebral fractures in the adult pre-Hispanic population of El Hierro of any age is 7.5%. Am J Phys Anthropol, 2004. © 2004 Wiley-Liss, Inc. [source]


    Factors in the Pathogenesis of Tumors of the Sphenoid and Maxillary Sinuses: A Comparative Study,

    THE LARYNGOSCOPE, Issue S96 2000
    Anthony J. Reino MD
    Abstract Objectives/Hypothesis To explain the processes that lead to the development of tumors in the maxillary and sphenoid sinuses. Study Design A 32-year review of the world's literature on neoplasms of these two sinuses and a randomized case-controlled study comparing the normal mucosal architecture of the maxillary to the sphenoid sinus. Methods Analysis of a 32-year world literature review reporting series of cases of maxillary and sphenoid sinus tumors. Tumors were classified by histological type and separated into subgroups if an individual incidence rate was reported. Histomorphometry of normal maxillary and sphenoid sinus mucosa was performed in 14 randomly selected patients (10 sphenoid and 4 maxillary specimens). Specimens were fixed in 10% formalin, embedded in paraffin, and stained with periodic acid,Schiff (PAS) and hematoxylin. Histomorphometric analysis was performed with a Zeiss Axioscope light microscope (Carl Zeiss Inc., Thornwood, NY) mounted with a Hamamatsu (Hamamatsu Photonics, Tokyo, Japan) color-chilled 3 charge coupled device digital camera. The images were captured on a 17-inch Sony (Sony Corp., Tokyo, Japan) multiscan monitor and analyzed with a Samba 4000 Image Analysis Program (Samba Corp., Los Angeles, CA). Five random areas were selected from strips of epithelium removed from each sinus, and goblet and basal cell measurements were made at magnifications ×100 and ×400. Results The literature review revealed that the number and variety of tumors in the maxillary sinus are much greater than those in the sphenoid. The incidence of metastatic lesions to each sinus is approximately equal. No recognized pattern of spread from any particular organ system could be determined. On histomorphometric study there were no statistically significant differences between the sinuses in the concentration of goblet cells, basal cells, or seromucinous glands. Conclusions Factors involved in the pathogenesis of tumors of the maxillary and sphenoid sinuses include differences in nasal physiology, embryology, morphology, and topography. There are no significant histological differences in the epithelium and submucous glands between the two sinuses to explain the dissimilar formation of neoplasms. [source]


    Vertical ridge augmentation of the atrophic posterior mandible with interpositional bloc grafts: bone from the iliac crest vs. bovine anorganic bone.

    CLINICAL ORAL IMPLANTS RESEARCH, Issue 12 2009
    Clinical, histological results up to one year after loading from a randomized-controlled clinical trial
    Abstract Objectives: To compare two different techniques for vertical bone augmentation of the posterior mandible: bone blocs from the iliac crest vs. anorganic bovine bone blocs used as inlays. Materials and methods: Ten partially edentulous patients having 5,7 mm of residual crestal height above the mandibular canal had their posterior mandibles randomly allocated to both interventions. After 4 months implants were inserted, and after 4 months, provisional prostheses were placed. Definitive prostheses were delivered after 4 months. Histomorphometry of samples trephined at implant placement, prosthesis and implant failures, any complication after loading and peri-implant marginal bone-level changes were assessed by masked assessors. All patients were followed up to 1 year after loading. Results: Four months after bone augmentation, there was statistically significant more residual graft (between 10% and 13%) in the Bio-Oss group. There were no statistically significant differences in failures and complications. Two implants could not be placed in one patient augmented with autogenous bone because the graft failed whereas one implant and its prosthesis of the Bio-Oss group failed after loading. After implant loading only one complication (peri-implantitis) occurred at one implant of the autogenous bone group. In 16 months (from implant placement to 1 year after loading), both groups lost statistically significant amounts of peri-implant marginal bone: 0.82 mm in the autogenous bone group and 0.59 mm in the Bio-Oss group; however, there were no statistically significant differences between the groups. Conclusions: Both procedures achieved good results, but the use of bovine blocs was less invasive and may be preferable than harvesting bone from the iliac crest. [source]


    Influence of implant diameter on surrounding bone

    CLINICAL ORAL IMPLANTS RESEARCH, Issue 5 2007
    Jeff Brink
    Abstract Objectives: Implant osseointegration is dependent upon various factors, such as bone quality and type of implant surface. It is also subject to adaptation in response to changes in bone metabolism or transmission of masticatory forces. Understanding of long-term physiologic adjustment is critical to prevention of potential loss of osseointegration, especially because excessive occlusal forces lead to failure. To address this issue, wide-diameter implants were introduced in part with the hope that greater total implant surface would offer mechanical resistance. Yet, there is little evidence that variation in diameter translates into a different bone response in the implant vicinity. Therefore, this study aimed at comparing the impact of implant diameter on surrounding bone. Material and methods: Twenty standard (3.75 mm) and 20 wide (5 mm) implants were placed using an animal model. Histomorphometry was performed to establish initial bone density (IBD), bone to implant contact (BIC) and adjacent bone density (ABD). Results: BIC was 71% and 73%, whereas ABD was 65% and 52%, for standard and wide implants, respectively. These differences were not statistically different (P>0.05). Correlation with IBD was then investigated. BIC was not correlated with IBD. ABD was not correlated to IBD for standard implants (r2=0.126), but it was correlated with wide implants (r2=0.82). In addition, a 1 : 1 ratio between IBD and ABD was found for wide implants. It can be concluded, within the limits of this study, that ABD may be influenced by implant diameter, perhaps due to differences in force dissipation. [source]


    Biodegradable polylactide membranes for bone defect coverage: biocompatibility testing, radiological and histological evaluation in a sheep model

    CLINICAL ORAL IMPLANTS RESEARCH, Issue 4 2006
    Gerhard Schmidmaier
    Abstract: Large bony defects often show a delayed healing and have an increasing risk of infection. Several materials are used for the coverage of large defects. These materials must be biocompatible, easy to use, and must have an appropriate stability to present a mechanical hindrance. Aim of this study was to investigate two different biodegradable membranes for defect coverage in a sheep model. Round cranial defects (1.5 cm diameter) were created in sheep. Six different treatments were investigated: defects without membrane, defects covered with a poly(d,l -lactide) or with a 70/30 poly(l/d,l -lactide) membrane and all defects with or without spongiosa filling. The sheep were sacrificed 12 or 24 weeks postoperatively. Bone formation in the defects was quantified by computer-assisted measurements of the area of the residual defect on CT radiographs. Histomorphometry and host-tissue response were evaluated by light microscopy. The biocompatibility was investigated by analyzing the amount of osteoclasts and foreign body cells. Both membranes served as a mechanical hindrance to prevent the prolapse of soft tissue into the defect. The biocompatibility test revealed no differences in the amount and distribution of osteoclasts at the two investigated time points and between the investigated groups. No negative effect on the tissue regeneration was detectable between the investigated groups related to the type of membrane, but a foreign body reaction around the two membrane types was observed. In the membrane-covered defects, the spongiosa showed a progressing remodeling to the native bony structure of the cranium. The groups without spongiosa partly revealed new bone formation, without complete bridging in any group or at any time point. Comparing the 12 and 24 weeks groups, an increased bone formation was detectable at the later time point. In conclusion, the results of the present in vivo study reveal a good biocompatibility and prevention of soft tissue prolapse of the two used membranes without differences between the membranes. An enhanced remodeling of the spongiosa into native bony structures under the membranes was detectable, but no osteopromoting effect was observed due to the membranes. [source]


    Echocardiographic Assessment of Left Ventricular Mass in Neonatal and Adult Mice: Accuracy of Different Echocardiographic Methods

    ECHOCARDIOGRAPHY, Issue 10 2006
    Alexander Ghanem M.D.
    Echocardiography is an established method to estimate left-ventricular mass (LVM) in mice. Accuracy is determined by cardiac size and morphology and influenced by mathematical models. We investigated accuracy of three common algorithms in three early developmental stages. High-resolution echocardiography was performed in 35 C57/BL6-mice. Therefore, two-dimensional-guided M-mode echocardiography and parasternal short- and long-axis views in B-mode were obtained. LVM was assessed in vivo applying Penn (P), Area Length (AL), and Truncated Ellipsoid (TE) algorithms and validated with histomorphometry. Regression analysis of all mice showed fair estimation of LVM assessed with M-mode-based Penn algorithm (y = 0.6*x , 0.12, r: 0.71). In contrast two-dimensional assessment of LVM revealed close linear relationship with histomorphometry (yAL= 1.21*x , 12.1, r: 0.88, yTE= 1.38*x , 2.88, r: 0.86). Bias was lowest for LVM-AL at diastole underestimating 3.2%. In concordance with the summarized data, LVM-P revealed lower regression coefficients and significant underestimation in all three subgroups. Small hearts (<50 mg, n = 12) correlated best with LVM-AL at systole. Hearts of adolescent (50,75 mg, n = 13) and adult (75,100 mg, n = 10) mice revealed close linear relationship with LVM-AL and LVM-TE at diastole. Echocardiographic assessment of LVM is feasible in hearts weighting less than 50 mg and can be estimated best in systole. Hearts weighting more than 50 mg are estimated most accurately by means of LVM-AL at diastole. [source]


    A detailed microscopic study of the changes in the aorta of experimental model of postmenopausal rats fed with repeatedly heated palm oil

    INTERNATIONAL JOURNAL OF EXPERIMENTAL PATHOLOGY, Issue 3 2009
    Siti Khadijah Adam
    Summary Hypercholesterolaemia, increase in lipid peroxidation and hyperhomocysteinaemia may contribute to the pathogenesis of atherosclerosis. This study was performed to examine the effects of repeatedly heated palm oil mixed with 2% cholesterol diet on atherosclerosis in oestrogen-deficient postmenopausal rats. Ovariectomy causes disruption of tunica intima layer of the rat aorta simulating a postmenopausal condition in females. Twenty-four ovariectomized female Sprague,Dawley rats were divided into four groups. The control group received 2% cholesterol diet without palm oil. A diet with 2% cholesterol content fortified with fresh, once-heated and five-times-heated palm oil was given to the other treatment groups. The rats were sacrificed at the end of 4 months of study and the aortic arch tissue was processed for histomorphometry and electron microscopy. On observation, there was disruption of the intimal layer of the ovariectomized rat aorta. There was no obvious ultrastructural change in the aorta of the rats fed with fresh palm oil. The ultrastructural changes were minimal with once-heated palm oil, in which there was a focal disruption of the endothelial layer. The focal disruption was more pronounced with five-times-heated palm oil. The results of this study show that the ingestion of fresh palm oil may have a protective effect on the aorta but such a protective action may be lost when the palm oil is repeatedly heated. The study may be clinically important for all postmenopausal women who are susceptible to atherosclerosis. [source]


    Destruction of microstructure in archaeological bone: a case study from Portugal

    INTERNATIONAL JOURNAL OF OSTEOARCHAEOLOGY, Issue 6 2001
    Mary Jackes
    Abstract Sampling of archaeological human bone may not be justified, contrary to former high expectations regarding adult age assessment based on histomorphometry. The alterations in buried bone as a result of bacterial action are readily visible in the scanning electron microscope (SEM). An understanding of the chemical and structural changes to cortical bone requires work at the level of a few microns. This paper reports on problems encountered during analyses of samples of human bone from Mesolithic (ca. 8000 calbp) shell midden sites at Muge in central Portugal, and the methods used to try and overcome these problems. We believe we have shown that these Mesolithic bones are partly comprised of bacterially reprecipitated mineral, which has had collagen removed, with consequent obliteration of bone microstructure. We conclude that microbial destruction of the structure of archaeological bone can be a serious impediment to analysis of the characteristics of the population represented by those skeletal remains. Copyright © 2001 John Wiley & Sons, Ltd. [source]


    Aged mice have enhanced endocortical response and normal periosteal response compared with young-adult mice following 1 week of axial tibial compression

    JOURNAL OF BONE AND MINERAL RESEARCH, Issue 9 2010
    Michael D Brodt
    Abstract With aging, the skeleton may lose its ability to respond to positive mechanical stimuli. We hypothesized that aged mice are less responsive to loading than young-adult mice. We subjected aged (22 months) and young-adult (7 months) BALB/c male mice to daily bouts of axial tibial compression for 1 week and evaluated cortical and trabecular responses using micro,computed tomography (µCT) and dynamic histomorphometry. The right legs of 95 mice were loaded for 60 rest-inserted cycles per day to 8, 10, or 12,N peak force (generating mid-diaphyseal strains of 900 to 1900 µ, endocortically and 1400 to 3100 µ, periosteally). At the mid-diaphysis, mice from both age groups showed a strong anabolic response on the endocortex (Ec) and periosteum (Ps) [Ec.MS/BS and Ps. MS/BS: loaded (right) versus control (left), p,<,.05]. Generally, bone formation increased with increasing peak force. At the endocortical surface, contrary to our hypothesis, aged mice had a significantly greater response to loading than young-adult mice (Ec.MS/BS and Ec.BFR/BS: 22 months versus 7 months, p,<,.001). Responses at the periosteal surface did not differ between age groups (p,>,.05). The loading-induced increase in bone formation resulted in increased cortical area in both age groups (loaded versus control, p,<,.05). In contrast to the strong cortical response, loading only weakly stimulated trabecular bone formation. Serial (in vivo) µCT examinations at the proximal metaphysis revealed that loading caused a loss of trabecular bone in 7-month-old mice, whereas it appeared to prevent bone loss in 22-month-old mice. In summary, 1 week of daily tibial compression stimulated a robust endocortical and periosteal bone-formation response at the mid-diaphysis in both young-adult and aged male BALB/c mice. We conclude that aging does not limit the short-term anabolic response of cortical bone to mechanical stimulation in our animal model. © 2010 American Society for Bone and Mineral Research [source]


    Parathyroid hormone (PTH),induced bone gain is blunted in SOST overexpressing and deficient mice

    JOURNAL OF BONE AND MINERAL RESEARCH, Issue 2 2010
    Ina Kramer
    Abstract Intermittent parathyroid hormone (PTH) treatment is a potent bone anabolic principle that suppresses expression of the bone formation inhibitor Sost. We addressed the relevance of Sost suppression for PTH-induced bone anabolism in vivo using mice with altered Sost gene dosage. Six-month-old Sost overexpressing and 2-month-old Sost deficient male mice and their wild-type littermates were subjected to daily injections of 100,µg/kg PTH(1,34) or vehicle for a 2-month period. A follow-up study was performed in Sost deficient mice using 40 and 80,µg/kg PTH(1,34). Animals were sacrificed 4 hours after the final PTH administration and Sost expression in long bone diaphyses was determined by qPCR. Bone changes were analyzed in vivo in the distal femur metaphysis by pQCT and ex vivo in the tibia and lumbar spine by DXA. Detailed ex vivo analyses of the femur were performed by pQCT, µCT, and histomorphometry. Overexpression of Sost resulted in osteopenia and Sost deletion in high bone mass. As shown before, PTH suppressed Sost in wild-type mice. PTH treatment induced substantial increases in bone mineral density, content, and cortical thickness and in aging wild-type mice also led to cancellous bone gain owing to amplified bone formation rates. PTH-induced bone gain was blunted at all doses and skeletal sites in Sost overexpressing and deficient mice owing to attenuated bone formation rates, whereas bone resorption was not different from that in PTH-treated wild-type controls. These data suggest that suppression of the bone formation inhibitor Sost by intermittent PTH treatment contributes to PTH bone anabolism. © 2010 American Society for Bone and Mineral Research [source]


    Overexpression of secreted frizzled-related protein 1 inhibits bone formation and attenuates parathyroid hormone bone anabolic effects

    JOURNAL OF BONE AND MINERAL RESEARCH, Issue 2 2010
    Wei Yao
    Abstract Secreted frizzled-related protein 1 (sFRP1) is an antagonist of Wnt signaling, an important pathway in maintaining bone homeostasis. In this study we evaluated the skeletal phenotype of mice overexpressing sFRP1 (sFRP1 Tg) and the interaction of parathyroid hormone (PTH) treatment and sFRP1 (over)expression. Bone mass and microarchitecture were measured by micro-computed tomography (µCT). Osteoblastic and osteoclastic cell maturation and function were assessed in primary bone marrow cell cultures. Bone turnover was assessed by biochemical markers and dynamic bone histomorphometry. Real-time PCR was used to monitor the expression of several genes that regulate osteoblast maturation and function in whole bone. We found that trabecular bone mass measurements in distal femurs and lumbar vertebral bodies were 22% and 51% lower in female and 9% and 33% lower in male sFRP1 Tg mice, respectively, compared with wild-type (WT) controls at 3 months of age. Genes associated with osteoblast maturation and function, serum bone formation markers, and surface based bone formation were significantly decreased in sFRP1 Tg mice of both sexes. Bone resorption was similar between sFRP1 Tg and WT females and was higher in sFRP1 Tg male mice. Treatment with hPTH(1-34) (40,µg/kg/d) for 2 weeks increased trabecular bone volume in WT mice (females: +30% to 50%; males: +35% to 150%) compared with sFRP1 Tg mice (females: +5%; males: +18% to 54%). Percentage increases in bone formation also were lower in PTH-treated sFRP1 Tg mice compared with PTH-treated WT mice. In conclusion, overexpression of sFRP1 inhibited bone formation as well as attenuated PTH anabolic action on bone. The gender differences in the bone phenotype of the sFRP1 Tg animal warrants further investigation. © 2010 American Society for Bone and Mineral Research [source]


    Osteoblast Function Is Compromised at Sites of Focal Bone Erosion in Inflammatory Arthritis,,

    JOURNAL OF BONE AND MINERAL RESEARCH, Issue 9 2009
    Nicole C Walsh PhD
    Abstract In rheumatoid arthritis (RA), synovial inflammation results in focal erosion of articular bone. Despite treatment attenuating inflammation, repair of erosions with adequate formation of new bone is uncommon in RA, suggesting that bone formation may be compromised at these sites. Dynamic bone histomorphometry was used in a murine model of RA to determine the impact of inflammation on osteoblast function within eroded arthritic bone. Bone formation rates at bone surfaces adjacent to inflammation were similar to those observed in nonarthritic bone; therefore, osteoblast activity is unlikely to compensate for the increased bone resorption at these sites. Within arthritic bone, the extent of actively mineralizing surface was reduced at bone surfaces adjacent to inflammation compared with bone surfaces adjacent to normal marrow. Consistent with the reduction in mineralized bone formation, there was a notable paucity of cells expressing the mid- to late stage osteoblast lineage marker alkaline phosphatase, despite a clear presence of cells expressing the early osteoblast lineage marker Runx2. In addition, several members of the Dickkopf and secreted Frizzled-related protein families of Wnt signaling antagonists were upregulated in arthritic synovial tissues, suggesting that inhibition of Wnt signaling could be one mechanism contributing to impaired osteoblast function within arthritic bone. Together, these data indicate that the presence of inflammation within arthritic bone impairs osteoblast capacity to form adequate mineralized bone, thus contributing to the net loss of bone and failure of bone repair at sites of focal bone erosion in RA. [source]


    Enzyme Replacement Therapy for Murine Hypophosphatasia,

    JOURNAL OF BONE AND MINERAL RESEARCH, Issue 6 2008
    José Luis Millán PhD
    Abstract Introduction: Hypophosphatasia (HPP) is the inborn error of metabolism that features rickets or osteomalacia caused by loss-of-function mutation(s) within the gene that encodes the tissue-nonspecific isozyme of alkaline phosphatase (TNALP). Consequently, natural substrates for this ectoenzyme accumulate extracellulary including inorganic pyrophosphate (PPi), an inhibitor of mineralization, and pyridoxal 5,-phosphate (PLP), a co-factor form of vitamin B6. Babies with the infantile form of HPP often die with severe rickets and sometimes hypercalcemia and vitamin B6 -dependent seizures. There is no established medical treatment. Materials and Methods: Human TNALP was bioengineered with the C terminus extended by the Fc region of human IgG for one-step purification and a deca-aspartate sequence (D10) for targeting to mineralizing tissue (sALP-FcD10). TNALP-null mice (Akp2,/,), an excellent model for infantile HPP, were treated from birth using sALP-FcD10. Short-term and long-term efficacy studies consisted of once daily subcutaneous injections of 1, 2, or 8.2 mg/kg sALP-FcD10 for 15, 19, and 15 or 52 days, respectively. We assessed survival and growth rates, circulating levels of sALP-FcD10 activity, calcium, PPi, and pyridoxal, as well as skeletal and dental manifestations using radiography, ,CT, and histomorphometry. Results:Akp2,/, mice receiving high-dose sALP-FcD10 grew normally and appeared well without skeletal or dental disease or epilepsy. Plasma calcium, PPi, and pyridoxal concentrations remained in their normal ranges. We found no evidence of significant skeletal or dental disease. Conclusions: Enzyme replacement using a bone-targeted, recombinant form of human TNALP prevents infantile HPP in Akp2,/, mice. [source]


    Targeted Deletion of the Sclerostin Gene in Mice Results in Increased Bone Formation and Bone Strength,,

    JOURNAL OF BONE AND MINERAL RESEARCH, Issue 6 2008
    Xiaodong Li
    Abstract Introduction: Sclerosteosis is a rare high bone mass genetic disorder in humans caused by inactivating mutations in SOST, the gene encoding sclerostin. Based on these data, sclerostin has emerged as a key negative regulator of bone mass. We generated SOST knockout (KO) mice to gain a more detailed understanding of the effects of sclerostin deficiency on bone. Materials and Methods: Gene targeting was used to inactivate SOST and generate a line of SOST KO mice. Radiography, densitometry, ,CT, histomorphometry, and mechanical testing were used to characterize the impact of sclerostin deficiency on bone in male and female mice. Comparisons were made between same sex KO and wildtype (WT) mice. Results: The results for male and female SOST KO mice were similar, with differences only in the magnitude of some effects. SOST KO mice had increased radiodensity throughout the skeleton, with general skeletal morphology being normal in appearance. DXA analysis of lumbar vertebrae and whole leg showed that there was a significant increase in BMD (>50%) at both sites. ,CT analysis of femur showed that bone volume was significantly increased in both the trabecular and cortical compartments. Histomorphometry of trabecular bone revealed a significant increase in osteoblast surface and no significant change in osteoclast surface in SOST KO mice. The bone formation rate in SOST KO mice was significantly increased for trabecular bone (>9-fold) at the distal femur, as well as for the endocortical and periosteal surfaces of the femur midshaft. Mechanical testing of lumbar vertebrae and femur showed that bone strength was significantly increased at both sites in SOST KO mice. Conclusions:SOST KO mice have a high bone mass phenotype characterized by marked increases in BMD, bone volume, bone formation, and bone strength. These results show that sclerostin is a key negative regulator of a powerful, evolutionarily conserved bone formation pathway that acts on both trabecular and cortical bone. [source]


    RANKL Inhibition with Osteoprotegerin Increases Bone Strength by Improving Cortical and Trabecular bone Architecture in Ovariectomized Rats,,

    JOURNAL OF BONE AND MINERAL RESEARCH, Issue 5 2008
    Michael S Ominsky
    Abstract Introduction: Ovariectomy (OVX) results in bone loss caused by increased bone resorption. RANKL is an essential mediator of bone resorption. We examined whether the RANKL inhibitor osteoprotegerin (OPG) would preserve bone volume, density, and strength in OVX rats. Materials and Methods: Rats were OVX or sham-operated at 3 mo of age. Sham controls were treated for 6 wk with vehicle (Veh, PBS). OVX rats were treated with Veh or human OPG-Fc (10 mg/kg, 2/wk). Serum RANKL and TRACP5b was measured by ELISA. BMD of lumbar vertebrae (L1,L5) and distal femur was measured by DXA. Right distal femurs were processed for bone histomorphometry. Left femurs and the fifth lumbar vertebra (L5) were analyzed by ,CT and biomechanical testing, and L6 was analyzed for ash weight. Results: OVX was associated with significantly greater serum RANKL and osteoclast surface and with reduced areal and volumetric BMD. OPG markedly reduced osteoclast surface and serum TRACP5b while completely preventing OVX-associated bone loss in the lumbar vertebrae, distal femur, and femur neck. Vertebrae from OPG-treated rats had increased dry and ash weight, with no significant differences in tissue mineralization versus OVX controls. ,CT showed that trabecular compartments in OVX-OPG rats had significantly greater bone volume fraction, vBMD, bone area, trabecular thickness, and number, whereas their cortical compartments had significantly greater bone area (p < 0.05 versus OVX-Veh). OPG improved cortical area in L5 and the femur neck to levels that were significantly greater than OVX or sham controls (p < 0.05). Biomechanical testing of L5 and femur necks showed significantly greater maximum load values in the OVX-OPG group (p < 0.05 versus OVX-Veh). Bone strength at both sites was linearly correlated with total bone area (r2 = 0.54,0.74, p < 0.0001), which was also significantly increased by OPG (p < 0.05 versus OVX). Conclusions: OPG treatment prevented bone loss, preserved trabecular architecture, and increased cortical area and bone strength in OVX rats. [source]


    Mutations in the Insulin-Like Factor 3 Receptor Are Associated With Osteoporosis,

    JOURNAL OF BONE AND MINERAL RESEARCH, Issue 5 2008
    Alberto Ferlin
    Abstract Introduction: Insulin-like factor 3 (INSL3) is produced primarily by testicular Leydig cells. It acts by binding to its specific G protein,coupled receptor RXFP2 (relaxin family peptide 2) and is involved in testicular descent during fetal development. The physiological role of INSL3 in adults is not known, although substantial INSL3 circulating levels are present. The aim of this study was to verify whether reduced INSL3 activity could cause or contribute to some signs of hypogonadism, such as reduced BMD, currently attributed to testosterone deficiency. Materials and Methods: Extensive clinical, biochemical, and hormonal study, including bone densitometry by DXA, was performed on 25 young men (age, 27,41 yr) with the well-characterized T222P mutation in the RXFP2 gene. Expression analysis of INSL3 and RXFP2 on human bone biopsy and human and mouse osteoblast cell cultures was performed by RT-PCR, quantitative RT-PCR, and immunohistochemistry. Real-time cAMP imaging analysis and proliferation assay under the stimulus of INSL3 was performed on these cells. Lumbar spine and femoral bone of Rxfp2- deficient mice were studied by static and dynamic histomorphometry and ,CT, respectively. Results: Sixteen of 25 (64%) young men with RXFP2 mutations had significantly reduced BMD. No other apparent cause of osteoporosis was evident in these subjects, whose testosterone levels and gonadal function were normal. Expression analyses showed the presence of RXFP2 in human and mouse osteoblasts. Stimulation of these cells with INSL3 produced a dose- and time-dependent increase in cAMP and cell proliferation, confirming the functionality of the RXFP2/INSL3 receptor,ligand complex. Consistent with the human phenotype, bone histomorphometric and ,CT analyses of Rxfp2,/, mice showed decreased bone mass, mineralizing surface, bone formation, and osteoclast surface compared with wildtype littermates. Conclusions: This study suggests for the first time a role for INSL3/RXFP2 signaling in bone metabolism and links RXFP2 gene mutations with human osteoporosis. [source]


    Long-Term Protective Effects of Zoledronic Acid on Cancellous and Cortical Bone in the Ovariectomized Rat,

    JOURNAL OF BONE AND MINERAL RESEARCH, Issue 4 2008
    Jürg A Gasser PhD
    Abstract Current bisphosphonate therapies effectively prevent bone loss in postmenopausal women. We studied the effect of a single intravenous dose of ZOL in ovariectomized rats. Protection from bone loss was dose dependent, lasting for up to 32 weeks, supporting the rationale for an annual intravenous dosing regimen of ZOL for treatment of postmenopausal osteoporosis. Introduction: Once-yearly dosing with zoledronic acid (ZOL) 5 mg can increase BMD and reduce fracture rate in postmenopausal women with low BMD. The primary objective of this study was to determine the duration of bone protective effects of a single dose of ZOL in ovariectomized rats, an animal model of postmenopausal osteopenia. Secondary objectives were to determine the effects on bone turnover and mechanical properties. Materials and Methods: Female Wistar rats (10 per group) received single intravenous doses of ZOL 0.8, 4, 20, 100, or 500 ,g/kg, alendronate 200 ,g/kg, or isotonic saline 4 days before bilateral ovariectomy. Sham-operated controls were pretreated with saline. Mass and density of cancellous and cortical bone (pQCT) were measured at 4-wk intervals for 32 wk. Bone architecture (,CT), bone formation dynamics (fluorochrome label-based histomorphometry), and biomechanical strength in compression testing were also assessed at 32 wk. Results: Ovariectomy-associated BMD loss was significantly attenuated for 32 wk by ZOL ,4 ,g/kg for total BMD, ZOL ,20 ,g/kg for cortical BMD, and ZOL ,4 ,g/kg for cancellous BMD (p < 0.01 versus ovariectomized controls). Alendronate 200 ,g/kg was of equivalent potency to ZOL 20 ,g/kg. Ovariectomy-associated decreases in trabecular architectural parameters were dose-dependently attenuated by ZOL. Alendronate 200 ,g/kg was equivalent to ZOL 20 ,g/kg. The bone resorption marker TRACP5b indicated transient suppression of elevated osteoclast activity by ZOL relative to OVX-rats even at the lowest dose of 0.8 ,g/kg, whereas at 100,500 ,g/kg, the effect was significant relative to the OVX control for the entire duration of the study of 32 wk. Bone formation parameters were not significantly affected by ZOL 20 ,g/kg but were significantly reduced by ZOL 100,500 ,g/kg. Alendronate 200 ,g/kg was equivalent to ZOL 100 ,g/kg. ZOL produced dose-related improvements in bone strength parameters after ovariectomy. Alendronate 200 ,g/kg was of similar potency to ZOL 20 ,g/kg. Conclusions: The duration and magnitude of the bone-protecting effect of a single intravenous dose of ZOL in ovariectomized rats is dose dependent and lasts for up to 32 wk. Compared with alendronate, ZOL shows 10-fold higher potency in preventing bone loss. These data support the use of an annual intravenous ZOL dosing regimen for the treatment of osteoporosis. [source]


    Enhanced Chondrogenesis and Wnt Signaling in PTH-Treated Fractures,

    JOURNAL OF BONE AND MINERAL RESEARCH, Issue 12 2007
    Sanjeev Kakar
    Abstract Studies have shown that systemic PTH treatment enhanced the rate of bone repair in rodent models. However, the mechanisms through which PTH affects bone repair have not been elucidated. In these studies we show that PTH primarily enhanced the earliest stages of endochondral bone repair by increasing chondrocyte recruitment and rate of differentiation. In coordination with these cellular events, we observed an increased level of canonical Wnt-signaling in PTH-treated bones at multiple time-points across the time-course of fracture repair, supporting the conclusion that PTH responses are at least in part mediated through Wnt signaling. Introduction: Since FDA approval of PTH [PTH(1,34); Forteo] as a treatment for osteoporosis, there has been interest in its use in other musculoskeletal conditions. Fracture repair is one area in which PTH may have a significant clinical impact. Multiple animal studies have shown that systemic PTH treatment of healing fractures increased both callus volume and return of mechanical competence in models of fracture healing. Whereas the potential for PTH has been established, the mechanism(s) by which PTH produces these effects remain elusive. Materials and Methods: Closed femoral fractures were generated in 8-wk-old male C57Bl/6 mice followed by daily systemic injections of either saline (control) or 30 ,g/kg PTH(1,34) for 14 days after fracture. Bones were harvested at days 2, 3, 5, 7, 10, 14, 21, and 28 after fracture and analyzed at the tissue level by radiography and histomorphometry and at the molecular and biochemical levels level by RNase protection assay (RPA), real-time PCR, and Western blot analysis. Results: Quantitative ,CT analysis showed that PTH treatment induced a larger callus cross-sectional area, length, and total volume compared with controls. Molecular analysis of the expression of extracellular matrix genes associated with chondrogenesis and osteogenesis showed that PTH treated fractures displayed a 3-fold greater increase in chondrogenesis relative to osteogenesis over the course of the repair process. In addition, chondrocyte hypertrophy occurred earlier in the PTH-treated callus tissues. Analysis of the expression of potential mediators of PTH actions showed that PTH treatment significantly induced the expression of Wnts 4, 5a, 5b, and 10b and increased levels of unphosphorylated, nuclear localized ,-catenin protein, a central feature of canonical Wnt signaling. Conclusions: These results showed that the PTH-mediated enhancement of fracture repair is primarily associated with an amplification of chondrocyte recruitment and maturation in the early fracture callus. Associated with these cellular effects, we observed an increase in canonical Wnt signaling supporting the conclusion that PTH effects on bone repair are mediated at least in part through the activation of Wnt-signaling pathways. [source]


    IGF-I Receptor Is Required for the Anabolic Actions of Parathyroid Hormone on Bone,

    JOURNAL OF BONE AND MINERAL RESEARCH, Issue 9 2007
    Yongmei Wang
    Abstract We showed that the IGF-IR,null mutation in mature osteoblasts leads to less bone and decreased periosteal bone formation and impaired the stimulatory effects of PTH on osteoprogenitor cell proliferation and differentiation. Introduction: This study was carried out to examine the role of IGF-I signaling in mediating the actions of PTH on bone. Materials and Methods: Three-month-old mice with an osteoblast-specific IGF-I receptor null mutation (IGF-IR OBKO) and their normal littermates were treated with vehicle or PTH (80 ,g/kg body weight/d for 2 wk). Structural measurements of the proximal and midshaft of the tibia were made by ,CT. Trabecular and cortical bone formation was measured by bone histomorphometry. Bone marrow stromal cells (BMSCs) were obtained to assess the effects of PTH on osteoprogenitor number and differentiation. Results: The fat-free weight of bone normalized to body weight (FFW/BW), bone volume (BV/TV), and cortical thickness (C.Th) in both proximal tibia and shaft were all less in the IGF-IR OBKO mice compared with controls. PTH decreased FFW/BW of the proximal tibia more substantially in controls than in IGF-IR OBKO mice. The increase in C.Th after PTH in the proximal tibia was comparable in both control and IGF-IR OBKO mice. Although trabecular and periosteal bone formation was markedly lower in the IGF-IR OBKO mice than in the control mice, endosteal bone formation was comparable in control and IGF-IR OBKO mice. PTH stimulated endosteal bone formation only in the control animals. Compared with BMSCs from control mice, BMSCs from IGF-IR OBKO mice showed equal alkaline phosphatase (ALP)+ colonies on day 14, but fewer mineralized nodules on day 28. Administration of PTH increased the number of ALP+ colonies and mineralized nodules on days 14 and 28 in BMSCs from control mice, but not in BMSCs from IGF-IR OBKO mice. Conclusions: Our results indicate that the IGF-IR null mutation in mature osteoblasts leads to less bone and decreased bone formation, in part because of the requirement for the IGF-IR in mature osteoblasts to enable PTH to stimulate osteoprogenitor cell proliferation and differentiation. [source]


    Effects Of a One-Month Treatment With PTH(1,34) on Bone Formation on Cancellous, Endocortical, and Periosteal Surfaces of the Human Ilium,

    JOURNAL OF BONE AND MINERAL RESEARCH, Issue 4 2007
    Robert Lindsay MD
    Abstract Using bone histomorphometry, we found that a 1-month treatment with PTH(1,34) [hPTH(1,34)] stimulated new bone formation on cancellous, endocortical, and periosteal bone surfaces. Enhanced bone formation was associated with an increase in osteoblast apoptosis. Introduction: The precise mechanisms by which hPTH(1,34) increases bone mass and improves bone structure are unclear. Using bone histomorphometry, we studied the early effects of treating postmenopausal women with osteoporosis with hPTH(1,34). Materials and Methods: Tetracycline-labeled iliac crest bone biopsies were obtained from 27 postmenopausal women with osteoporosis who were treated for 1 month with hPTH(1,34), 50 ,g daily subcutaneously. The results were compared with tetracycline-labeled biopsies from a representative control group of 13 postmenopausal women with osteoporosis. Results: The bone formation rate on the cancellous and endocortical surfaces was higher in hPTH(1,34),treated women than in control women by factors of 4.5 and 5.0, respectively. We also showed a 4-fold increase in bone formation rate on the periosteal surface, suggesting that hPTH(1,34) has the potential to increase bone diameter in humans. On the cancellous and endocortical surfaces, the increased bone formation rate was primarily caused by stimulation of formation in ongoing remodeling units, with a modest amount of increased formation on previously quiescent surfaces. hPTH(1,34),stimulated bone formation was associated with an increase in osteoblast apoptosis, which may reflect enhanced turnover of the osteoblast population and may contribute to the anabolic action of hPTH(1,34). Conclusions: These findings provide new insight into the cellular basis by which hPTH(1,34) improves cancellous and cortical bone architecture and geometry in patients with osteoporosis. [source]


    Osteoblast Deletion of Exon 3 of the Androgen Receptor Gene Results in Trabecular Bone Loss in Adult Male Mice,

    JOURNAL OF BONE AND MINERAL RESEARCH, Issue 3 2007
    Amanda J Notini
    Abstract The mechanism of androgen action on bone was studied in male mice with the AR deleted in mature osteoblasts. These mice had decreased trabecular bone volume associated with a decrease in trabecular number, suggesting that androgens may act directly on osteoblasts to maintain trabecular bone. Introduction: Androgens modulate bone cell activity and are important for the maintenance of bone mass. However, the mechanisms by which they exert these actions on bone remain poorly defined. The aim of this study was to investigate the role of androgens acting through the classical androgen receptor (AR) signaling pathways (i.e., DNA-binding dependent pathways) in osteoblasts using male mice in which exon 3 of the AR gene was deleted specifically in mature osteoblasts. Materials and Methods: Mice with a floxed exon 3 of the AR gene were bred with Col 2.3-cre transgenic mice, in which Cre recombinase is expressed in mineralizing osteoblasts. The skeletal phenotype of mutant mice was assessed by histomorphometry and quantitative ,CT at 6, 12, and 32 weeks of age (n = 8 per group). Wildtype, hemizygous exon 3 floxed and hemizygous Col 2.3-cre male littermates were used as controls. Data were analyzed by one-way ANOVA and Tukey's posthoc test. Results: ,CT analysis of the fifth lumbar vertebral body showed that these mice had reduced trabecular bone volume (p < 0.05) at 32 weeks of age compared with controls. This was associated with a decrease in trabecular number (p < 0.01) at 12 and 32 weeks of age, suggesting increased bone resorption. These effects were accompanied by a reduction in connectivity density (p < 0.01) and an increase in trabecular separation (p < 0.01). A similar pattern of trabecular bone loss was observed in the distal femoral metaphysis at 32 weeks of age. Conclusions: These findings show that inactivation of the DNA binding,dependent functions of the AR, specifically in mature osteoblasts in male mice, results in increased bone resorption and decreased structural integrity of the bone, leading to a reduction in trabecular bone volume at 32 weeks of age. These data provide evidence of a role for androgens in the maintenance of trabecular bone volume directly through DNA binding,dependent actions of the AR in mature osteoblasts. [source]