High Turnover Numbers (high + turnover_number)

Distribution by Scientific Domains


Selected Abstracts


Palladium-Catalyzed Cross-Coupling Reactions with Zinc, Boron, and Indium Exhibiting High Turnover Numbers (TONs): Use of Bidentate Phosphines and Other Critical Factors in Achieving High TONs.

CHEMINFORM, Issue 26 2005
Zhihong Huang
Abstract For Abstract see ChemInform Abstract in Full Text. [source]


TEMPO and Carboxylic Acid Functionalized Imidazolium Salts/Sodium Nitrite: An Efficient, Reusable, Transition Metal-Free Catalytic System for Aerobic Oxidation of Alcohols

ADVANCED SYNTHESIS & CATALYSIS (PREVIOUSLY: JOURNAL FUER PRAKTISCHE CHEMIE), Issue 13 2009
Cheng-Xia Miao
Abstract An effective catalytic system comprising a 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) functionalized imidazolium salt ([Imim-TEMPO]+,X,), a carboxylic acid substituted imidazolium salt ([Imim-COOH]+,X,), and sodium nitrite (NaNO2) was developed for the aerobic oxidation of aliphatic, allylic, heterocyclic and benzylic alcohols to the respective carbonyl compounds with excellent selectivity up to >99%, even at ambient conditions. Notably, the catalyst system could preferentially oxidize a primary alcohol to the aldehyde rather than a secondary alcohol to the ketone. Moreover, the reaction rate is greatly enhanced when a proper amount of water is present. And a high turnover number (TON 5000) is achieved in the present transition metal-free aerobic catalytic system. Additionally, the functionalized imidazolium salts are successfully reused at least four times. This process thus represents a greener pathway for the aerobic oxidation of alcohols into carbonyl compounds by using the present task-specific ionic liquids in place of the toxic and volatile additive, such as hydrogen bromide, bromine, or hydrogen chloride (HBr, Br2 or HCl), which is commonly required for the transition metal-free aerobic oxidation of alcohols. [source]


An Efficient Solvent-Free Route to Silyl Esters and Silyl Ethers

ADVANCED SYNTHESIS & CATALYSIS (PREVIOUSLY: JOURNAL FUER PRAKTISCHE CHEMIE), Issue 9 2009
Yuko Ojima
Abstract Dinuclear metal complexes, especially (p -cymene)ruthenium dichloride dimer {[RuCl2(p -cymene)]2}, have been found to exhibit high catalytic performance for the dehydrosilylation of various kinds of carboxylic acids and alcohols. The dehydrosilylation with [RuCl2(p -cymene)]2 proceeded efficiently with only one equivalent of silane with respect to substrate (carboxylic acids or alcohols) under solvent-free conditions to give the corresponding silyl esters and ethers in excellent yields with a high turnover number (TON) and frequency (TOF). The 1H,NMR spectrum of a toluene- d8 solution of [RuCl2(p -cymene)]2 and a silane showed a signal assignable to the ruthenium hydride species. In contrast, no new signals were detected in the 1H,NMR spectrum of a toluene- d8 solution of [RuCl2(p -cymene)]2 and a carboxylic acid or an alcohol. Therefore, the ruthenium metal in [RuCl2(p -cymene)]2 activates a silane to afford the hydride intermediate, possibly a silylmetal hydride species. Then, the nucleophilic attack of a substrate (carboxylic acid or alcohol) to the hydride intermediate proceeds to give the corresponding silylated product. The present dehydrosilylation with an optically active silane proceeded exclusively under inversion of stereochemistry at the chiral silicon center, suggesting that the nucleophilic attack of a substrate to the hydride intermediate occurs from the backside of the ruthenium-silicon bond. [source]


Advances towards Highly Active and Stereoselective Simple and Cheap Proline-Based Organocatalysts,

EUROPEAN JOURNAL OF ORGANIC CHEMISTRY, Issue 29 2010
Francesco Giacalone
Abstract Ten 4-acyloxy- L -prolines were screened as catalysts at loadings of 2,0.1 mol-% for the direct asymmetric aldol reaction in water by using variable amounts of water. Among them, a new catalyst, the L -proline carrying a trans -4-(2,2-diphenylacetoxy) group, and a catalyst previously synthesized by us, the L -proline carrying a trans -4-(4-phenylbutanoyloxy) group, were found to be excellent catalysts for the aldol reaction between cyclohexanone or cyclopentanone and substituted benzaldehydes when employed in only 1 and 0.5 mol-%,respectively, at room temperature without additives. For such catalysts, high turnover numbers were obtained, which are among the highest values obtained for enamine organocatalysis. Finally, these catalysts can be synthesized by direct O -acylation from inexpensive molecules and successfully used in scaled-up reactions. [source]


Efficient Heterogeneous Dual Catalyst Systems for Alkane Metathesis

ADVANCED SYNTHESIS & CATALYSIS (PREVIOUSLY: JOURNAL FUER PRAKTISCHE CHEMIE), Issue 1 2010
Zheng Huang
Abstract A fully heterogeneous and highly efficient dual catalyst system for alkane metathesis (AM) has been developed. The system is comprised of an alumina-supported iridium pincer catalyst for alkane dehydrogenation/olefin hydrogenation and a second heterogeneous olefin metathesis catalyst. The iridium catalysts bear basic functional groups on the aromatic backbone of the pincer ligand and are strongly adsorbed on Lewis acid sites on alumina. The heterogeneous systems exhibit higher lifetimes and productivities relative to the corresponding homogeneous systems as catalyst/catalyst interactions and bimolecular decomposition reactions are inhibited. Additionally, using a "two-pot" device, the supported Ir catalysts and metathesis catalysts can be physically separated and run at different temperatures. This system with isolated catalysts shows very high turnover numbers and is selective for the formation of high molecular weight alkanes. [source]


Highly Efficient and Enantioselective Iridium-Catalyzed Asymmetric Hydrogenation of N -Arylimines

ADVANCED SYNTHESIS & CATALYSIS (PREVIOUSLY: JOURNAL FUER PRAKTISCHE CHEMIE), Issue 18 2009
Wei Li
Abstract A catalytic method employing the cationic iridium-(Sc,Rp)-DuanPhos [(1R,1,R,2S,2,S)-2,2,-di- tert -butyl-2,2,,3,3, -tetrahydro-1H,1,H -1,1,-biisophosphindole] complex and BARF {tetrakis[3,5-bis(trifluoromethyl)phenyl]borate} counterion effectively catalyzes the enantioselective hydrogenation of acyclic N -arylimines with high turnover numbers (up to 10,000 TON) and excellent enantioselectivities (up to 98% ee), achieving the practical synthesis of chiral secondary amines. [source]


Palladium-Catalyzed Oxidation of Phenyl-Substituted Alkenes using Molecular Oxygen as the Sole Oxidant

ADVANCED SYNTHESIS & CATALYSIS (PREVIOUSLY: JOURNAL FUER PRAKTISCHE CHEMIE), Issue 14-15 2009
Aline
Abstract The palladium-catalyzed aerobic oxidation of styrene and 2-vinylnaphthalene in dimethylacetamide/water or dimethylformamide/water solutions under mild conditions has been developed, in which palladium(II) chloride is used in the absence of co-catalysts or special stabilizing ligands as the sole and recyclable catalyst. The corresponding methyl ketones have been obtained in good to excellent yields with low catalyst loadings (0.2,5,mol%) and high turnover numbers (up to ca. 1000 to palladium). This simple and efficient catalytic method represents an ecologically benign and economically attractive synthetic pathway to industrially important compounds used in the manufacture of various polymers and drugs. [source]


A New Regeneration System for Oxidized Nicotinamide Cofactors

ADVANCED SYNTHESIS & CATALYSIS (PREVIOUSLY: JOURNAL FUER PRAKTISCHE CHEMIE), Issue 9 2009
Seda Aksu
Abstract A novel regeneration system for oxidized nicotinamide cofactors (NAD+ and NADP+) is presented. By combining 2,2,-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid (ABTS)-catalyzed oxidation of NAD(P)H with laccase-catalyzed utilization of molecular oxygen as terminal oxidant, a simple chemo-enzymatic NAD(P)+ regeneration method is achieved. Thus, the advantages of both worlds, chemical oxidation of reduced nicotinamide cofactors and laccase-catalyzed utilization of oxygen from air are combined in a simple and generally applicable new approach for biooxidation catalysis. This new application of the well-known laccase-mediator system (LMS) is successfully used to promote alcohol dehydrogenase-catalyzed oxidation reactions of primary and secondary alcohols. Already under non-optimized conditions, high turnover numbers of >300 and >16000 were obtained for the nicotinamide cofactor and ABTS, respectively. In this communication, we present the proof-of-principle and initial characterization of the proposed new regeneration system. [source]