Home About us Contact | |||
High Mechanical Strength (high + mechanical_strength)
Selected AbstractsA Novel Hydrogel with High Mechanical Strength: A Macromolecular Microsphere Composite Hydrogel,ADVANCED MATERIALS, Issue 12 2007T. Huang A novel hydrogel with a new, well- defined network structure is prepared through a two-step method in which the radiation-peroxidized macromolecular microspheres act as both initiators and crosslinkers. The macromolecular microsphere composite hydrogel (see figure) can effectively dissipate applied mechanical stress and has extremely high mechanical strength. Some of the hydrogels can nearly completely recover their original shapes, even after an extremely high strain (99.7%) in compression tests. [source] Graphene Based Electrochemical Sensors and Biosensors: A ReviewELECTROANALYSIS, Issue 10 2010Yuyan Shao Abstract Graphene, emerging as a true 2-dimensional material, has received increasing attention due to its unique physicochemical properties (high surface area, excellent conductivity, high mechanical strength, and ease of functionalization and mass production). This article selectively reviews recent advances in graphene-based electrochemical sensors and biosensors. In particular, graphene for direct electrochemistry of enzyme, its electrocatalytic activity toward small biomolecules (hydrogen peroxide, NADH, dopamine, etc.), and graphene-based enzyme biosensors have been summarized in more detail; Graphene-based DNA sensing and environmental analysis have been discussed. Future perspectives in this rapidly developing field are also discussed. [source] MEL-type Pure-Silica Zeolite Nanocrystals Prepared by an Evaporation-Assisted Two-Stage Synthesis Method as Ultra-Low- k Materials,ADVANCED FUNCTIONAL MATERIALS, Issue 12 2008Yan Liu Abstract A MEL-type pure-silica zeolite (PSZ), prepared by spin-on of nanoparticle suspensions, has been shown to be a promising ultra-low-dielectric-constant (k) material because of its high mechanical strength, hydrophobicity, and chemical stability. In our previous works, a two-stage synthesis method was used to synthesize a MEL-zeolite nanoparticle suspension, in which both nanocrystal yield and particle size of the zeolite suspension increased with increasing synthesis time. For instance, at a crystal yield of 63%, the particle size is 80,nm, which has proved to be too large because it introduces a number of problems for the spin-on films, including large surface roughness, surface striations, and large mesopores. In the current study, the two-stage synthesis method is modified into an evaporation-assisted two-stage method by adding a solvent-evaporation process between the two thermal-treatment steps. The modified method can yield much smaller particle sizes (e.g., 14,vs. 80,nm) while maintaining the same nanocrystal yields as the two-stage synthesis. Furthermore, the nanoparticle suspensions from the evaporation-assisted two-stage synthesis show a bimodal particle size distribution. The primary nanoparticles are around 14,nm in size and are stable in the final suspension with 60% solvent evaporation. The factors that affect nanocrystal synthesis are discussed, including the concentration, pH value, and viscosity. Spin-on films prepared by using suspensions synthesized this way have no striations and improved elastic modulus (9.67,±,1.48,GPa vs. 7.82,±,1.30,GPa), as well as a similar k value (1.91,±,0.09 vs. 1.89,±,0.08) to the previous two-stage synthesized films. [source] Formation of Network and Cellular Structures by Viscoelastic Phase SeparationADVANCED MATERIALS, Issue 18 2009Hajime Tanaka Abstract Network (sponge) and cellular structures are often seen in various types of materials. Materials with such structures are generally characterized by light weight and high mechanical strength. The usefulness of such materials is highlighted, for example, by the remarkable material properties of bone tissue, which often has a highly porous structure. In artificial materials, plastic and metallic foams and breads have such structures. Here, we describe a physical principle for producing network and cellular structures using phase separation, and its potential applications to the morphological control of materials spanning from soft to hard matter. [source] A Novel Hydrogel with High Mechanical Strength: A Macromolecular Microsphere Composite Hydrogel,ADVANCED MATERIALS, Issue 12 2007T. Huang A novel hydrogel with a new, well- defined network structure is prepared through a two-step method in which the radiation-peroxidized macromolecular microspheres act as both initiators and crosslinkers. The macromolecular microsphere composite hydrogel (see figure) can effectively dissipate applied mechanical stress and has extremely high mechanical strength. Some of the hydrogels can nearly completely recover their original shapes, even after an extremely high strain (99.7%) in compression tests. [source] A new austenitic alumina forming alloy: an aluminium-coated FeNi32Cr20MATERIALS AND CORROSION/WERKSTOFFE UND KORROSION, Issue 6 2008H. Hattendorf Abstract The FeCrAl alloys owe their low oxidation rate to the formation of a slow growing , -aluminium oxide scale. Therefore they are used, for example, as a substrate material in metal-supported automotive catalytic converters. Increasing exhaust gas temperatures mean that, in addition to the oxidation properties, high temperature mechanical properties should also be improved. Compared to the ferritic FeCrAl alloys, austenitic alloys possess the required high mechanical strength at higher temperatures. However for most commercially available materials the oxidation resistance is not sufficient due to a low aluminium content. High aluminium contents are avoided in austenitic alloys, since they cause severe workability problems, even at aluminium contents, which are below the necessary amount to get a pure alumina scale. The newly developed material Nicrofer 3220 PAl (coated FeNiCrAl) consists of an austenitic FeNi32Cr20 alloy coated with aluminium on both sides. It combines the outstanding oxidation resistance of an alumina forming FeCrAl alloy with the advantage of the high temperature strength of an austenitic alloy. Additionally the oxidation is even lower than the oxidation of the commercial grade Aluchrom YHf (FeCr20Al6),conventional homogenous FeCrAl. Aluminium coated FeNiCrAl can easily be formed into its final shape. Prior to service, an in situ heat treatment is recommended in order to optimize the properties. [source] A cell leakproof PLGA-collagen hybrid scaffold for cartilage tissue engineeringBIOTECHNOLOGY PROGRESS, Issue 3 2010Naoki Kawazoe Abstract A cell leakproof porous poly(DL -lactic-co-glycolic acid) (PLGA)-collagen hybrid scaffold was prepared by wrapping the surfaces of a collagen sponge except the top surface for cell seeding with a bi-layered PLGA mesh. The PLGA-collagen hybrid scaffold had a structure consisting of a central collagen sponge formed inside a bi-layered PLGA mesh cup. The hybrid scaffold showed high mechanical strength. The cell seeding efficiency was 90.0% when human mesenchymal stem cells (MSCs) were seeded in the hybrid scaffold. The central collagen sponge provided enough space for cell loading and supported cell adhesion, while the bi-layered PLGA mesh cup protected against cell leakage and provided high mechanical strength for the collagen sponge to maintain its shape during cell culture. The MSCs in the hybrid scaffolds showed round cell morphology after 4 weeks culture in chondrogenic induction medium. Immunostaining demonstrated that type II collagen and cartilaginous proteoglycan were detected in the extracellular matrices. Gene expression analyses by real-time PCR showed that the genes encoding type II collagen, aggrecan, and SOX9 were upregulated. These results indicated that the MSCs differentiated and formed cartilage-like tissue when being cultured in the cell leakproof PLGA-collagen hybrid scaffold. The cell leakproof PLGA-collagen hybrid scaffolds should be useful for applications in cartilage tissue engineering. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2010 [source] Introduction of pH-sensitivity into mechanically strong nanoclay composite hydrogels based on N -isopropylacrylamideJOURNAL OF POLYMER SCIENCE (IN TWO SECTIONS), Issue 19 2008Siddharthya K. Mujumdar Abstract pH-sensitive nanoclay composite hydrogels based on N -isopropylacrylamide (NIPA) were synthesized by copolymerization with cationic and anionic comonomers. Laponite nanoclay particles served as multifunctional crosslinkers, producing hydrogels with exceptionally high mechanical strengths, as measured by elongation at break. Cationic copolymer gels based on NIPA and dimethylaminoethylmethacrylate were prepared by aqueous free radical polymerization, adopting a procedure reported by Haraguchi (Adv Mater 2002, 14, 1120,1124). Without modification, this technique failed to produce anionic copolymer gels of NIPA and methacrylic acid (MAA), due to flocculation of clay particles. Three methods were conceived to incorporate acidic MAA into nanoclay hydrogels. First, NIPA was copolymerized with sodium methacrylate under dilute conditions, producing hydrogels with good pH-sensitivity but weak mechanical characteristics. Second, NIPA was copolymerized with methyl methacrylate, which was then hydrolyzed to generate acid sidegroups, yielding hydrogels that were much stronger but less pH sensitive. Third, NIPA was copolymerized with MAA following modification of the nanoclay surface with pyrophosphate ions. The resulting hydrogels exhibited both strong pH-sensitivities at 37 °C and excellent tensile properties. Optical transparency changed during polymerization, depending on hydrophobicity of the components. This work increases the diversity and functionality of nanoclay hydrogels, which display certain mechanical advantages over conventionally crosslinked hydrogels. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 6630,6640, 2008 [source] |