Home About us Contact | |||
High Ionic Strength (high + ionic_strength)
Selected AbstractsIncorporating the effect of ionic strength in free energy calculations using explicit ionsJOURNAL OF COMPUTATIONAL CHEMISTRY, Issue 2 2005Serena Donnini Abstract The incorporation of explicit ions to mimic the effect of ionic strength or to neutralize the overall charge on a system in free energy calculations using molecular dynamics simulations is investigated. The difference in the free energy of hydration between two triosephosphate isomerase inhibitors calculated at five different ion concentrations is used as an example. We show that the free energy difference can be highly sensitive to the presence of explicit ions even in cases where the mutation itself does not involve a change in the overall charge. The effect is most significant if the molecule carries a net charge close to the site mutated. Furthermore, it is shown that the introduction of a small number of ions can lead to very severe sampling problems suggesting that in practical calculations convergence can best be achieved by incorporating either no counterions or by simulating at high ionic strength to ensure sufficient sampling of the ion distribution. © 2004 Wiley Periodicals, Inc. J Comput Chem 26: 115,122, 2005 [source] pH-independent hydrolysis of 4-nitrophenyl 2,2-dichloropropionate in aqueous micellar solutions: relative contributions of hydrophobic and electrostatic interactionsJOURNAL OF PHYSICAL ORGANIC CHEMISTRY, Issue 8 2001Omar A. EI Seoud Abstract The pH-independent hydrolysis of 4-nitrophenyl 2,2-dichloropropionate (NPDCP) in the presence of aqueous micelles of sodium dodecyl sulfate, sodium dodecylbenzene sulfonate, alkyltrimethylammonium chlorides, alkyldimethylbenzylammonium chlorides (alkyl,=,cetyl and dodecyl) and polyoxyethylene(9) nonylphenyl ether was studied spectrophotometrically. The observed rate constants, kobs, decrease in the following order: bulk water >cationic micelles >anionic micelles >non-ionic micelles. This order is different from that observed for pH-independent hydrolysis of 4-nitrophenyl chloroformate (NPCF), whose reaction is faster in cationic micelles than in bulk water. A proton NMR study on solubilization of a model ester, 4-nitrophenyl 2-chloropropionate, showed that the methylene groups in the middle of the surfactant hydrophobic chain are most affected by the solubilizate. Lower polarity and high ionic strength of interfacial water decrease the rates of hydrolysis of both NPCF and NPDCP, but the fraction of the former ester that diffuses to the interface is probably higher than that of the latter. Therefore, whereas the (negatively charged) transition state of NPCF is stabilized by cationic interfaces and destabilized by anionic interfaces, that of NPDCP is negligibly affected by ionic interfaces, which explains the observed rate retardation by all ionic micelles. Calculated activation parameters corroborate our explanation. Copyright © 2001 John Wiley & Sons, Ltd. [source] Ni clay neoformation on montmorillonite surfaceJOURNAL OF SYNCHROTRON RADIATION, Issue 2 2001Rainer Dähn Polarized extended X-ray absorption fine structure spectroscopy (P-EXAFS) was used to study the sorption mechanism of Ni on the aluminous hydrous silicate montmorillonite at high ionic strength (0.3 M NaClO4), pH 8 and a Ni concentration of 0.66 mM. Highly textured self-supporting clay films were obtained by slowly filtrating a clay suspension after a reaction time of 14 days. P-EXAFS results indicate that sorbed Ni has a Ni clay-like structural environment with the same crystallographic orientation as montmorillonite layers. [source] Silicon Nitride Colloidal Probe Measurements: Interparticle Forces and the Role of Surface-Segment Interactions in Poly(acrylic acid) Adsorption from Aqueous SolutionJOURNAL OF THE AMERICAN CERAMIC SOCIETY, Issue 8 2001Eric Laarz Direct measurements of forces between silicon nitride surfaces in the presence of poly(acrylic acid) (PAA) are presented. The force-distance curves were obtained at pH > pHiep with an atomic force microscopy (AFM) colloidal-probe technique using a novel spherical silicon nitride probe attached to the AFM cantilever. We found that PAA adsorbs onto the negatively charged silicon nitride surface, which results in an increased repulsive surface potential. The steric contribution to the interparticle repulsion is small and the layer conformation remains flat even at high surface potentials or high ionic strength. The general features of the stabilization of ceramic powders with PAA are discussed; we suggest that PAA adsorbs onto silicon nitride by sequential adsorption of neighboring segments ("zipping"), which results in a flat conformation. In contrast, the long-range steric force found in the ZrO2/PAA system at pH > pHiep arises because the stretched equilibrium bulk conformation of the highly charged polymer is preserved via the formation of strong, irreversible surface-segment bonds on adsorption. [source] Effect of medium molecular weight xanthan gum in rheology and stability of oil-in-water emulsion stabilized with legume proteinsJOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE, Issue 12 2005Evdoxia M Papalamprou Abstract Xanthan gum is a water-soluble extracellular polysaccharide that has gained widespread commercial use because of its strong pseudoplasticity and tolerance to high ionic strength, which bring unique rheological properties to solutions. This study compares and evaluates the emulsifying properties of oil-in-water (30:70 v/v) emulsions stabilized with lupin and soya protein isolates and medium molecular weight xanthan gum. The protein was obtained by an isoelectric precipitation method and the polysaccharide was produced by Xanthomonas campestris ATCC 1395 in batch culture in a laboratory fermenter (LBG medium) without pH control. The addition of xanthan gum in the emulsion formulation enhances emulsion stability through the phenomenon of thermodynamic incompatibility with the legume protein, resulting in an increase of the adsorbed protein at the interface. The emulsion stability is also enhanced by a network structure built by the polysaccharide in the bulk phase. Copyright © 2005 Society of Chemical Industry [source] Fabrication of Diverse Microcapsule Arrays of High Density and Good StabilityMACROMOLECULAR RAPID COMMUNICATIONS, Issue 12 2010Jie Yang Abstract Microcapsule arrays attract a lot of interest due to their potential applications in sensing technology. A strategy for fabricating diverse microcapsule arrays through covalent linking is reported here. The self-assembly of microcapsules was directed by using a poly(allylamine hydrochloride) (PAH)-patterned template, which was created via microcontact printing. The microcapsules with PAH as the outermost layer were treated with glutaraldehyde and then covalently immobilized on the PAH regions, resulting in ordered microcapsule arrays. The arrays had a high density of capsules and the aggregate number in a pattern could be well controlled by adjusting the area of the PAH pattern. A single microcapsule array could be obtained if the diameter of the PAH region was smaller than that of the microcapsules. These covalently assembled arrays could survive through successive incubation in solutions of high ionic strength and extreme pHs. Such good stability ensures further treatments, such as chemical reactions and loading of functional substances. [source] Hydrogen/deuterium exchange on protein solutions containing nucleic acids: utility of protamine sulfateRAPID COMMUNICATIONS IN MASS SPECTROMETRY, Issue 16 2008Anton Poliakov Obtaining global hydrogen/deuterium (H/D) exchange data on proteins is an important first step in amide proton exchange experiments. Important information such as the mode of exchange, the cooperativity of folding/unfolding reactions, and the effects of ligand binding can be readily obtained in global exchange experiments. Many interesting biological systems are complexes containing both proteins and nucleic acids. The low pH conditions required to quench H/D exchange reactions result in the formation of stable protein/nucleic acid precipitates which interfere with the liquid chromatography step of the experiment and preclude obtaining mass spectrometric data. In this work we show that the precipitation of proteins and nucleic acids is electrostatic in nature and can be prevented by high ionic strength and by removing nucleic acids by protamine sulfate. Using protamine sulfate in quenching solution, we were able to obtain global H/D data with protein samples containing large amounts of DNA or RNA. Copyright © 2008 John Wiley & Sons, Ltd. [source] Impact desolvation of electrosprayed microdroplets , a new ionization method for mass spectrometry of large biomoleculesRAPID COMMUNICATIONS IN MASS SPECTROMETRY, Issue 21 2001Sergei A. Aksyonov Impact desolvation of electrosprayed microdroplets (IDEM) is a new method for producing gas-phase ions of large biomolecules. Analytes are dissolved in an electrolyte solution which is electrosprayed in vacuum, producing highly charged micron and sub-micron sized droplets (microdroplets). These microdroplets are accelerated through potential differences ,5,,,10,kV to velocities of several km/s and allowed to impact a target surface. The energetic impacts vaporize the droplets and release desolvated gas-phase ions of the analyte molecules. Oligonucleotides (2- to 12-mer) and peptides (bradykinin, neurotensin) yield singly and doubly charged molecular ions with no detectable fragmentation. Because the extent of multiple charging is significantly less than in atmospheric pressure electrospray ionization, and the method produces ions largely free of adducts from solutions of high ionic strength, IDEM has some promise as a method for coupling to liquid chromatographic techniques and for mixture analysis. Ions are produced in vacuum at a flat equipotential surface, potentially allowing efficient ion extraction. Copyright © 2001 John Wiley & Sons, Ltd. [source] Characterization of the polyanion-induced molten globule-like state of cytochrome cBIOPOLYMERS, Issue 2 2007Erik Sedlák Abstract Cytochrome c (cyt c) undergoes a poly(vinylsulphate) (PVS)-induced transition at slightly acidic pH into a molten globule-like state that resembles the effect that negatively charged membrane surfaces have on this protein. In this work, the thermodynamic properties of the molten globule-like state of cyt c in complex with PVS are studied using differential scanning calorimetry, circular dichroism, fluorescence, and absorbance spectroscopy. The temperature-induced transition of the molten globule-like state of cyt c in the complex with PVS is characterized by a significantly lower calorimetric enthalpy than in the "typical" molten globule state of cyt c, i.e. free protein at pH 2.0 in high ionic strength. Moreover, the thermally-denatured state of cyt c in the complex at pH < 6 contains nearly 50% of the native secondary structure. The dependence of the transition temperature on the pH indicates a role for histidine residues in the destabilization of the cyt c structure in the PVS complex and in stabilization of the denatured state with the residual secondary structure. A comparison of the effects of small anions and polyanions demonstrates the importance of cooperativity among the anions in the destabilization of cyt c. Predictably, other hydrophilic flexible polyanions such as heparin, polyglutamate, and polyadenylate also have a destabilizing effect on the structure of cyt c. However, a correlation between the properties of the polyanions and their effect on the protein stability is still unclear. © 2007 Wiley Periodicals, Inc. Biopolymers 86: 119,126, 2007. This article was originally published online as an accepted preprint. The "Published Online" date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com [source] Structure and lability of archaeal dehydroquinaseACTA CRYSTALLOGRAPHICA SECTION F (ELECTRONIC), Issue 10 2008Natasha N. Smith Multiple sequence alignments of type I 3-dehydroquinate dehydratases (DQs; EC 4.2.1.10) show that archaeal DQs have shorter helical regions than bacterial orthologs of known structure. To investigate this feature and its relation to thermostability, the structure of the Archaeoglobus fulgidus (Af) DQ dimer was determined at 2.33,Å resolution and its denaturation temperature was measured in vitro by circular dichroism (CD) and differential scanning calorimetry (DSC). This structure, a P212121 crystal form with two 45,kDa dimers in the asymmetric unit, is the first structural representative of an archaeal DQ. Denaturation occurs at 343 ± 3,K at both low and high ionic strength and at 349,K in the presence of the substrate analog tartrate. Since the growth optimum of the organism is 356,K, this implies that the protein maintains its folded state through the participation of additional factors in vivo. The (,,)8 fold is compared with those of two previously determined type I DQ structures, both bacterial (Salmonella and Staphylococcus), which had sequence identities of ,30% with AfDQ. Although the overall folds are the same, there are many differences in secondary structure and ionic features; the archaeal protein has over twice as many salt links per residue. The archaeal DQ is smaller than its bacterial counterparts and lower in regular secondary structure, with its eight helices being an average of one turn shorter. In particular, two of the eight normally helical regions (the exterior of the barrel) are mostly nonhelical in AfDQ, each having only a single turn of 310 -helix flanked by ,-strand and coil. These `protohelices' are unique among evolutionarily close members of the (,,)8 -fold superfamily. Structural features that may contribute to stability, in particular ionic factors, are examined and the implications of having a Tm below the organism's growth temperature are considered. [source] Effects of ionic strength on lysozyme uptake rates in cation exchangers.BIOTECHNOLOGY & BIOENGINEERING, Issue 2 2005I: Uptake in SP Sepharose FF Fluorescence scanning confocal microscopy was used in parallel with batch uptake and breakthrough measurements of transport rates to study the effect of ionic strength on the uptake of lysozyme into SP Sepharose FF. In all cases the adsorption isotherms were near-rectangular. As described previously, the intraparticle profiles changed from slow-moving self-sharpening fronts at low salt concentration, to fast-moving diffuse profiles at high salt concentration, and batch uptake rates correspondingly increased with increasing salt concentration. Shrinking core and homogeneous diffusion frameworks were used successfully to obtain effective diffusivities for the low salt and high salt conditions, respectively. The prediction of column breakthrough was generally good using these frameworks, except for low-salt uptake results. In those cases, the compressibility of the stationary phase coupled with the shrinking core behavior appears to reduce the mass transfer rates at particle-particle contacts, leading to shallower breakthrough curves. In contrast, the fast uptake rates at high ionic strength appear to reduce the importance of mass transfer limitations at the particle contacts, but the confocal results do show a flow rate dependence on the uptake profiles, suggesting that external mass transfer becomes more limiting at high ionic strength. These results show that the complexity of behavior observable at the microscopic scale is directly manifested at the column scale and provides a phenomenological basis to interpret and predict column breakthrough. In addition, the results provide heuristics for the optimization of chromatographic conditions. © 2005 Wiley Periodicals, Inc. [source] A novel purification strategy for retrovirus gene therapy vectors using heparin affinity chromatographyBIOTECHNOLOGY & BIOENGINEERING, Issue 4 2005María de las Mercedes Segura Abstract Membrane separation and chromatographic technologies are regarded as an attractive alternative to conventional academic small-scale ultracentrifugation procedures used for retrovirus purification. However, despite the increasing demands for purified retroviral vector preparations, new chromatography adsorbents with high specificity for the virus have not been reported. Heparin affinity chromatography is presented here as a novel convenient tool for retrovirus purification. The ability of bioactive retroviral particles to specifically bind to heparin ligands immobilized on a chromatographic gel is shown. A purification factor of 63 with a recovery of 61% of functional retroparticles was achieved using this single step. Tentacle heparin affinity supports captured retroviral particles more efficiently than conventional heparin affinity chromatography supports with which a lower recovery was obtained (18%). Intact, infective retroviral particles were recovered by elution with low salt concentrations (350 mM NaCl). Mild conditions for retrovirus elution from chromatographic columns are required to preserve virus infectivity. VSV-G pseudotyped retroviruses have shown to be very sensitive to high ionic strength, losing 50% of their activity and showing membrane damage after a short exposure to 1M NaCl. We also report a complete scaleable downstream processing scheme for the purification of MoMLV-derived vectors that involves sequential microfiltration and ultra/diafiltration steps for virus clarification and concentration respectively, followed by fractionation by heparin affinity chromatography and final polishing by size-exclusion chromatography. Overall, by using this strategy, a 38% yield of infective particles can be achieved with a final purification factor of 2,000. © 2005 Wiley Periodicals, Inc. [source] Electric field induced desorption of bacteria from a conditioning film covered substratumBIOTECHNOLOGY & BIOENGINEERING, Issue 4 2001Albert T. Poortinga Abstract Desorption of three oral bacterial strains from a salivary conditioning film on an indium tin oxide electrode during application of a positive (bacterial adhesion to the anode) or a negative electric current was studied in a parallel plate flow chamber. Bacterial adhesion was from a flowing suspension of high ionic strength, after which the bacterial suspension was replaced by a low ionic strength solution without bacteria and currents ranging from ,800 to +800 ,A were applied. Streptococcus oralis J22 desorbed during application of a positive and negative electric current with a desorption probability that increased with increasing electric current. Two actinomyces strains, however, could not be stimulated to desorb by the electric currents applied. The desorption forces acting on adhering bacteria are electroosmotic in origin and working parallel to the electrode surface in case of a positive current, whereas they are electrophoretic and electrostatic in origin and working perpendicular to the surface in case of a negative current. By comparison of the effect of positive and negative electric currents, it can be concluded that parallel forces are more effective in stimulating bacterial desorption than perpendicular forces. The results of this study point to a new pathway of cleaning industrial and biomedical surfaces without the use of detergents or biocides. © 2001 John Wiley & Sons, Inc. Biotechnol Bioeng 76: 395,399, 2001. [source] Charge Transport in Redox Polyelectrolyte Multilayer Films: The Dramatic Effects of Outmost Layer and Solution Ionic StrengthCHEMPHYSCHEM, Issue 13 2010Dr. Mario Tagliazucchi Abstract The redox switching kinetics, that is, charge transfer and transport in layer-by-layer-deposited electroactive polyelectrolyte multilayers is systematically studied with variable-scan-rate cyclic voltammetry. The experiments are performed with films finished in the redox polycation (an osmium pyridine,bipyridine derivatized polyallylamine, PAH-Os) and the polyanion (polyvinyl sulfonate, PVS), in solutions of different electrolyte concentrations. A modified diffusion model is developed to account for the experimentally observed dependence of the average peak potential with the scan rate. This model is able to describe both the redox peak potential and the current, providing information on the electron-transfer rate constants and the diffusion coefficient for the electron-hopping mechanism. While the former does not vary with the ionic strength or the nature of the outmost layer, polyanion-capped films present an electron-hopping diffusion coefficient at low ionic strength that is three orders of magnitude smaller than that for PAH-Os-capped films. The effect is offset at high ionic strength. We discuss the possible causes of the effect and the important consequences for electrochemical devices built by layer-by-layer self-assembly, such as amperometric biosensors or electrochromic devices. [source] Application of the Ion-interaction Model to the Solubility Prediction of LiCl-HCl-MgCl2 -H2O System at 20 °CCHINESE JOURNAL OF CHEMISTRY, Issue 8 2005Li Ya-Hong Abstract Component solubility in HCl-LiCl-MgCl2 -H2O system of high ionic strength at 20 °C was predicted by using the Pitzer's ion-interaction model. The results indicated that the model supplied a very good prediction of the component solubility of the system mentioned above. The values of parameters of ,0, ,1 and C, of HCl, LiCl and MgCl2 were obtained from optimization of literature data, while those of ,MN and ,MNX were calculated from a least-squares optimization procedure to couple activity coefficient with solubility data. According to the ion-interaction model, no additional parameters need to be determined for more complex systems. The study provided theoretical basis for the manufacture process, which was proposed by Gao and employed to extract LiCl and MgCl2·6H2O from salt lake brine. [source] |