High Humidity (high + humidity)

Distribution by Scientific Domains
Distribution within Life Sciences


Selected Abstracts


High humidity suppresses ssi4 -mediated cell death and disease resistance upstream of MAP kinase activation, H2O2 production and defense gene expression

THE PLANT JOURNAL, Issue 6 2004
Fasong Zhou
Summary The Arabidopsis ssi4 mutant, which exhibits spontaneous lesion formation, constitutive expression of pathogenesis-related (PR) genes and enhanced resistance to virulent bacterial and oomycete pathogens, contains a gain-of-function mutation in a TIR-NBS-LRR type R gene. Epistatic analyses revealed that both PR gene expression and disease resistance are activated via a salicylic acid (SA)- and EDS1 -dependent, but NPR1 - and NDR1 -independent signaling pathway. In this study, we demonstrate that in moderate relative humidity (RH; 60%), the ssi4 mutant accumulates H2O2 and SA prior to lesion formation and displays constitutive activation of the MAP kinases AtMPK6 and AtMPK3. It also constitutively expresses a variety of defense-associated genes, including those encoding the WRKY transcription factors AtWRKY29 and AtWRKY6, the MAP kinases AtMPK6 and AtMPK3, the powdery mildew R proteins RPW8.1 and RPW8.2, EDS1 and PR proteins. All of these ssi4 -induced responses, as well as the chlorotic, stunted morphology and enhanced disease resistance phenotype, are suppressed by high RH (95%) growth conditions. Thus, a humidity sensitive factor (HSF) appears to function at an early point in the ssi4 signaling pathway. All ssi4 phenotypes, except for MAP kinase activation, also were suppressed by the eds1-1 mutation. Thus, ssi4 -induced MAP kinase activation occurs downstream of the HSF but either upstream of EDS1 or on a separate branch of the ssi4 signaling pathway. SA is a critical signaling component in ssi4 -mediated defense responses. However, exogenously supplied SA failed to restore lesion formation in high RH-grown ssi4 plants, although it induced defense gene expression. Thus, additional signals also are involved. [source]


Effects of humidity and temperature on the fatigue behaviour of an extruded AZ61 magnesium alloy

FATIGUE & FRACTURE OF ENGINEERING MATERIALS AND STRUCTURES, Issue 4 2005
Z. B. SAJURI
ABSTRACT Load-controlled fatigue tests were performed at 20 and 50 °C using two relative humidity levels of 55 and 80% to characterize the influence of humidity and temperature on the fatigue behaviour of an extruded AZ61 magnesium alloy. Fatigue tests were also conducted at 150 °C. No significant variation in fatigue properties was noticed with respect to temperature over the range from 20 to 50 °C for both the humidity levels. Fatigue limits in the range 140,150 MPa were observed for relative humidity of 55%. Fatigue strength decreased significantly with increase in temperature to 150 °C. Further, a significant reduction in fatigue strength with a fatigue limit of ,110 MPa was observed with increase in relative humidity to 80% at 20 and 50 °C. The crack initiation and propagation remained transgranular under all test conditions. The fatigue fracture at low stress amplitudes and high relative humidity of 80% results from the formation of corrosion pits at the surface and their growth to a critical size for fatigue-crack initiation and propagation. The observed reduction in fatigue strength at high humidity is ascribed to the effects associated with fatigue,environment interaction. [source]


Nursing management of fever in children: A systematic review

INTERNATIONAL JOURNAL OF NURSING PRACTICE, Issue 1 2003
FRCNA, Robin Watts RN
ABSTRACT Objectives:, The aim of the present review was to determine whether the best available evidence supports the types and timing of the various nursing interventions that are commonly used to reduce fever in non-critically-ill children, and to what extent the outcomes are influenced by these nursing actions. Methods:, Studies included were randomised or quasi-randomised controlled trials that involved non-critically-ill children with a fever aged between 3 months and 16 years. ,,The search strategy sought to identify both published and unpublished research reports in the English language and covered all major databases up to 1998. ,,The methodological quality of each study was assessed by two independent reviewers using a piloted critical appraisal checklist. ,,Despite all studies being randomised, heterogeneity precluded conduction of a meta-analysis; therefore, evidence was synthesised using narrative summaries. Results: Ten studies were assessed as being of sufficient quality to be included in the review. These studies addressed two of the intervention categories identified in the protocol: (i) administration of antipyretics (paracetamol); and (ii) direct cooling measures on the outcome measure (reduction of or prevention of increase in fever). The review found little benefit from sponging in temperate climates and usually at the expense of the child's comfort. There may be situations in high environmental temperatures and high humidity, or where there is a need for immediate temperature reduction, in which sponging may be warranted. Risks were identified when paracetamol was administered on a sustained basis over even a short period of time and above a relatively low total daily dosage. There was a lack of evidence to support the administration of antipyretics to reduce the incidence of febrile convulsions. There is a need for parental education that focuses on knowledge of the body's protective physiological responses and how to support these responses. Conclusion: The primary purpose for intervening when a child has a fever is to increase the child's comfort. This consideration should be weighed against any harm that might result from intervening. There was a lack of evidence to support the routine use of sponging. The administration of paracetamol should be used selectively and with caution. In summary, care needs to be individualised, based on current knowledge of the effectiveness and risks of interventions. [source]


Control of Plutella xylostella using polymer-formulated Steinernema carpocapsae and Bacillus thuringiensis in cabbage fields

JOURNAL OF APPLIED ENTOMOLOGY, Issue 4 2005
S. Schroer
Abstract:, Field trials evaluating the potential of the entomopathogenic nematode Steinernema carpocapsae and the feasibility to combine nematodes with Bacillus thuringiensis for sustainable control of the diamondback moth (DBM) Plutella xylostella were conducted in cabbage cultivated in the province Probolinggo, east Java and Indonesia. A single use of 0.5 million S. carpocapsae m,2 applied with a surfactant-polymer-formulation containing 0.3% xanthan and 0.3% Rimulgan® achieved a significant reduction of the insects per plant with >50% control after 7 days. Even 14 days after the application about 45% control was recorded and dead larvae containing nematodes were found. No significant effects were recorded when the formulation was compared with nematodes applied in water or with a surfactant alone. This was attributed to high humidity in the experimental area at the end of the rainy season and a microclimate in the cabbage heads favouring nematode survival. Weekly applications of B. thuringiensis (Turex®) or alternating applications of Turex® and the nematodes achieved >80% control. The application of both biological agents together every second week reached insignificant lower efficacy (70%). Nematodes can be used to substitute ineffective chemical insecticides and alterations with B. thuringiensis can prevent the further development of resistance against the bacterial control agent. [source]


Dependence of Fructooligosaccharide Content on Activity of Fructooligosaccharide-Metabolizing Enzymes in Yacon (Smallanthus sonchifolius) Tuberous Roots during Storage

JOURNAL OF FOOD SCIENCE, Issue 6 2007
A. Narai-Kanayama
ABSTRACT:, Tuberous roots of yacon (Smallanthus sonchifolius) accumulate about 10%, on a fresh weight basis, of inulin-type fructooligosacharides (FOSs), known as a food ingredient with various healthy benefits. However, we have a great difficulty to ensure these benefits because FOSs with a lower degree of polymerization (DP) decreased remarkably, and fructose increased when the tuberous roots were stored after harvesting even under previously recommended storage conditions of low temperature with high humidity. In the present study, to elucidate the involvement of FOS-metabolizing enzymes in FOS reduction during storage at 90% relative humidity and 8°C, we extracted a crude protein from yacon tuberous roots and measured the activities of invertase (,-fructofuranosidase, EC 3.2.1.26), sucrose:sucrose 1-fructosyltransferase (1-SST, EC 2.4.1.99), fructan:fructan 1-fructosyltransferase (1-FFT, EC 2.4.1.100), and fructan 1-exohydrolase (1-FEH, EC 3.2.1.80). The enzyme activities acting on sucrose, both invertase and 1-SST, were weakened after storage for a month. In addition, the activity of 1-FEH acting on short FOSs such as 1-kestose (GF2) and 1-nystose (GF3) was higher than that of 1-FFT. These results suggest that the continuous decline in FOSs of low DP during storage was dependent mainly on the 1-FEH activity. On the other hand, FOSs with a DP of , 9 only slightly decreased in stored yacon tuberous roots during storage, though distinct 1-FEH activity was observed in vitro toward a high-DP inulin-type substrate, indicating that highly polymerized FOSs content was unlikely to be closely connected with the 1-FEH activity. [source]


Selection and Use of Postharvest Technologies as a Component of the Food Chain

JOURNAL OF FOOD SCIENCE, Issue 2 2004
MALCOLM C. BOURNE
ABSTRACT: Postharvest technologies refer to the stabilization and storage of unprocessed or minimally processed foods from the time of harvest until final preparation for human consumption. There is a special emphasis on seasonal crops, and simple, labor-intensive, capital-sparing technologies suitable for developing countries where food spoilage rates are high and malnutrition is prevalent. The first step is to determine the major spoilage vectors for each type of food and then identify a technology that will control that vector. For cereal grains the major spoilage vectors are mold, insects, rodents, and other vertebrate pests. Mold is controlled by prompt and adequate drying to a water activity below 0.7. Insects are controlled by good housekeeping, and use of insecticides and fumigants. Rodents are controlled by baits, traps, fumigants, and rodent-proof storage structures. For fruits, vegetables, roots, and tubers the main spoilage vectors are bruising, rotting, senescence, and wilting. Bruising is avoided by careful handling and use of shock-resistant packaging. Rotting is controlled by good housekeeping, gentle handling to avoid breaking the skin, cool storage, and use of preservatives. Senescence is retarded by cold storage or controlled-atmosphere storage. Wilting is controlled by high humidity and cold storage. Growth of microbes is the major spoilage of fish and other foods of animal origin. This is controlled by refrigerated or frozen storage, drying, freezing, or canning. Most spoilage vectors accelerate as the temperature and humidity increase; this makes it more difficult to control spoilage in tropical than in temperate regions. [source]


Evaluation of hydrate-screening methods

JOURNAL OF PHARMACEUTICAL SCIENCES, Issue 7 2008
Yong Cui
Abstract The purpose of this work is to evaluate the effectiveness and reliability of several common hydrate-screening techniques, and to provide guidelines for designing hydrate-screening programs for new drug candidates. Ten hydrate-forming compounds were selected as model compounds and six hydrate-screening approaches were applied to these compounds in an effort to generate their hydrate forms. The results prove that no screening approach is universally effective in finding hydrates for small organic compounds. Rather, a combination of different methods should be used to improve screening reliability. Among the approaches tested, the dynamic water vapor sorption/desorption isotherm (DVI) method and storage under high humidity (HH) yielded 60,70% success ratios, the lowest among all techniques studied. The risk of false negatives arises in particular for nonhygroscopic compounds. On the other hand, both slurry in water (Slurry) and temperature cycling of aqueous suspension (TCS) showed high success rates (90%) with some exceptions. The mixed solvent systems (MSS) procedure also achieved high success rates (90%), and was found to be more suitable for water-insoluble compounds. For water-soluble compounds, MSS may not be the best approach because recrystallization is difficult in solutions with high water activity. Finally, vapor diffusion (VD) yielded a reasonably high success ratio in finding hydrates (80%). However, this method suffers from experimental difficulty and unreliable results for either highly water-soluble or water-insoluble compounds. This study indicates that a reliable hydrate-screening strategy should take into consideration the solubility and hygroscopicity of the compounds studied. A combination of the Slurry or TCS method with the MSS procedure could provide a screening strategy with reasonable reliability. © 2007 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 97:2730,2744, 2008 [source]


Development of Greenhouse Inoculation Procedures for Evaluation of Partial Resistance to Cercospora zeae-maydis in Maize Inbreds

JOURNAL OF PHYTOPATHOLOGY, Issue 11-12 2005
G. Asea
Abstract Greenhouse experiments were conducted to determine the effects of inoculation methods on incubation period, lesion length, percentage leaf area affected and sporulation of Cercospora zeae-maydis on young maize (Zea mays L.) plants inoculated at V3 growth stage. Seedling plants were inoculated by four methods: (i) application of conidial suspension while puncturing the leaves within the whorl several times, (ii) spraying conidial suspension on leaves, (iii) placing colonized agar into lateral slits in leaves and (iv) placing colonized agar into whorls. Analysis of variance revealed a significant effect of genotype and inoculation method on several components of resistance and overall disease severity. Application of conidial suspension while puncturing the whorl was found to be the least laborious method, and it produced characteristic symptoms of gray leaf spot. Consistent trends were observed in classification of inbreds to resistant, susceptible and intermediate classes. Increasing the duration of exposure to high humidity by placing plastic bags over plants for 5 days significantly increased disease severity (P , 0.001). Cercospora zeae-maydis produced conidia in all the lesions examined. Spore production was generally most abundant in lesions on susceptible inbreds that displayed necrotic lesion types (LT) and least abundant in lesions on resistant inbreds that were characterized by chlorotic and fleck LTs. The results demonstrated that inoculations in the greenhouse can provide an indication of inbred responses to C. zeae-maydis and may be useful in evaluating resistance and in studies of host,pathogen interactions. [source]


Synthesis and characterization of sulfonated poly(benzoxazole ether ketone)s by direct copolymerization as novel polymers for proton-exchange membranes

JOURNAL OF POLYMER SCIENCE (IN TWO SECTIONS), Issue 11 2007
Jinhuan Li
Abstract A new series of sulfonated poly(benzoxazole ether ketone)s (SPAEKBO-X) were prepared by the aromatic nucleophilic polycondensation of 4,4,-(hexafluoroisopropylidene)-diphenol with 2,2,-bis[2-(4-fluorophenyl)benzoxazol-6-yl]hexafluoropropane and sodium 5,5,-carbonylbis-2-fluorobenzenesulfonate in various ratios. Fourier transform infrared and 1H NMR were used to characterize the structures and sulfonic acid contents of the copolymers. The copolymers were soluble in N -methyl-2-pyrrolidinone, N,N -dimethylacetamide, and N,N -dimethylformamide and could form tough and flexible membranes. The protonated membranes were thermally stable up to 320 °C in air. The water uptake, hydrolytic and oxidative stability, and mechanical properties were evaluated. At 30,90 °C and 95% relative humidity, the proton conductivities of the membranes increased with the sulfonic acid content and temperature and almost reached that of Nafion 112. At 90,130 °C, without external humidification, the conductivities increased with the temperature and benzoxazole content and reached above 10,2 S/cm. The SPAEKBO-X membranes, especially those with high benzoxazole compositions, possessed a large amount of strongly bound water (>50%). The experimental results indicate that SPAEKBO-X copolymers are promising for proton-exchange membranes in fuel cells, and their properties might be tailored by the adjustment of the copolymer composition for low temperatures and high humidity or for high temperatures and low humidity; they are especially promising for high-temperature applications. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 2273,2286, 2007 [source]


Solvent Resistant Honeycomb Films from Photo-Crosslinkable Polycinnamate

MACROMOLECULAR RAPID COMMUNICATIONS, Issue 8 2007
Olaf Karthaus
Abstract Microporous films consisting of two-dimensionally ordered void structures - so-called honeycomb films - were produced by evaporation of polymer solutions under high humidity. Two types of poly(vinyl cinnamate)s were used: A newly synthesized amphiphilic poly(vinyl cinnamate) and a mixture of a commercial poly(vinyl cinnamate) and an amphiphilic polyion complex. Photo-crosslinking of the honeycomb structure could be achieved by UV irradiation while completely retaining the film morphology. The crosslinked films showed excellent stability against organic solvents. [source]


Dust mite infestation of flour samples

ALLERGY, Issue 12 2009
F. C. Yi
Background:, Ingestion of flour contaminated with dust mite may trigger severe anaphylaxis in tropical and sub-tropical regions. Aims:, This study aimed to evaluate environmental factors that affect dust mite propagation in the tropics. Materials & Methods:, Dust mites were introduced to a variety of flour samples and incubated at two different environmental conditions. Results: It was found that dust mites populations flourished best in wheat flour compared to other varieties of flour, and at ambient temperatures with high humidity instead of the air conditioned environment. Conclusion:, Dust mite infestation of flour is dependent on the presence of wheat and high ambient temperature in the tropics. [source]


Environmental interactions with the toxicity of plant essential oils to the poultry red mite Dermanyssus gallinae

MEDICAL AND VETERINARY ENTOMOLOGY, Issue 1 2010
D. R. GEORGE
The toxicity of a range of plant essential oils to the poultry red mite, Dermanyssus gallinae (De Geer) (Acari: Dermanyssidae), a serious ectoparasitic pest of laying hens throughout Europe and elsewhere, was assessed in the laboratory. Dermanyssus gallinae may cause losses in egg production, anaemia and, in extreme cases, death of hens. With changes in legislation and consumer demand, alternatives to synthetic acaricides are needed to manage this pest. Fifty plant essential oils were selected for their toxicity to arthropods reported in the literature. Twenty-four of these essential oils were found to kill > 75% of adult D. gallinae in contact toxicity tests over a 24-h period at a rate of 0.21 mg/cm2. Subsequent testing at lower rates showed that the essential oils of cade, manuka and thyme were especially toxic to adult D. gallinae. The toxicity of the seven most acaricidal essential oils was found to be stable at different temperatures likely to be encountered in commercial poultry housing (15°C, 22°C and 29°C), although results suggest that humidity and dust might influence the toxicity of some of the oils tested. The toxicity of clove bud essential oil to D. gallinae, for example, was increased at high humidity and dust levels compared with ambient levels. The results suggest that certain essential oils may make effective botanical pesticides for use against D. gallinae, although it is likely that issues relating to the consistency of the toxic effect of some oils will determine which oils will be most effective in practice. [source]


Temperature dependence of thermally-carbonized porous silicon humidity sensor

PHYSICA STATUS SOLIDI (A) APPLICATIONS AND MATERIALS SCIENCE, Issue 8 2005
M. Björkqvist
Abstract Thermal carbonization of porous silicon (PS) at 820 °C under acetylene atmosphere is an appropriate method for humidity sensing purposes. It produces stable and hydrophilic surface still maintaining originally large specific surface area of PS. We report the temperature dependence of various electrical param- eters measured for the thermally-carbonized PS humidity sensor. Capacitance of the sensor in dry air (6 RH%) is almost constant at various temperatures, whereas in higher relative humidity values, the temperature dependence becomes evident. The resistance variation of the sensor is less dependent on RH as the temperature increases. While the capacitance showed linear behavior as a function of temperature, the resistance had a clear non-linear temperature dependence. In order to get information about the effects of frequency on capacitance values, we measured a phase angle and admittance of the sensor as a function of frequency at three different temperatures in low and high humidity. According to these results, it is preferable to operate this sensor construction using low frequency (<1 kHz). (© 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]


Water vapour isotopic exchange by epiphytic bromeliads in tropical dry forests reflects niche differentiation and climatic signals

PLANT CELL & ENVIRONMENT, Issue 6 2008
CASANDRA REYES-GARCÍA
ABSTRACT The 18O signals in leaf water (,18Olw) and organic material were dominated by atmospheric water vapour 18O signals (,18Ovap) in tank and atmospheric life forms of epiphytic bromeliads with crassulacean acid metabolism (CAM), from a seasonally dry forest in Mexico. Under field conditions, the mean ,18Olw for all species was constant during the course of the day and systematically increased from wet to dry seasons (from 0 to +6,), when relative water content (RWC) diminished from 70 to 30%. In the greenhouse, progressive enrichment from base to leaf tip was observed at low night-time humidity; under high humidity, the leaf tip equilibrated faster with ,18Ovap than the other leaf sections. Laboratory manipulations using an isotopically depleted water source showed that ,18Ovap was more rapidly incorporated than liquid water. Our data were consistent with a Craig,Gordon (C-G) model as modified by Helliker and Griffiths predicting that the influx and exchange of ,18Ovap control ,18Olw in certain epiphytic life forms, despite progressive tissue water loss. We use ,18Olw signals to define water-use strategies for the coexisting species which are consistent with habitat preference under natural conditions and life form. Bulk organic matter (,18Oorg) is used to predict the ,18Ovap signal at the time of leaf expansion. [source]


The impact of silane chemistry conditions on the properties of wood plastic composites with low density polyethylene and high wood content

POLYMER COMPOSITES, Issue 5 2010
Yu Geng
Silane chemistry was implemented on various formulations of wood/thermoplastic polymer composites (WPCs) with low density polyethylene (LDPE) and high wood content (60 wt%). Taguchi analysis was used to evaluate the impact of vinyltrimethoxysilane content (VTMS), dicumyl peroxide content (DCP), and processing temperature on the rheological, morphological, and dynamic mechanic properties of WPCs. The torque power was measured by a Haake torque rheometer and indicated that the VTMS content and temperature most significantly impacted the rheological properties related to silane reactions. Differential scanning calorimetry also showed a larger depression in LDPE melting point and crystallinity index when a high VTMS content (35 phr), high DCP content (0.5 phr), and a high compounding temperature (200°C) were used. With dynamic mechanical analysis (DMA), it was shown that the compounded formulations had a higher storage modulus over a wide range of temperature whereas the , transition temperature increased with higher content in silane reactants. Interestingly, the high humidity/temperature conditioning step aimed at crosslinking resulted in a drop of dynamic moduli compared to the freshly compounded formulations. This was explained by the fact that during compounding of LDPE with high wood content and silane reactants, significant amounts of matrix and interfacial silane crosslinking already occurred. Subsequent conditioning in a high humidity and temperature environment was proposed to hydrolyze the interfacial siloxane bonds resulting in a degradation of mechanical properties. POLYM. COMPOS., 2010. © 2009 Society of Plastics Engineers [source]


Epidermal proliferative response induced by sodium dodecyl sulphate varies with environmental humidity

BRITISH JOURNAL OF DERMATOLOGY, Issue 2 2001
M. Denda
Background Previous studies have suggested that susceptibility of skin to external agents increases in the dry winter season. Objectives To test the hypothesis that environmental humidity affects skin sensitivity to irritants. Methods The epidermal hyperplasia induced by sodium dodecyl sulphate (SDS) under various humidity conditions was evaluated on the skin of hairless mice. Results Mice kept under low humidity for 2 days showed more obvious epidermal proliferation 24 h after topical application of SDS than those kept under high or normal humidity for 2 days. In contrast, mice kept under high humidity for 2 weeks showed more obvious epidermal proliferation 24 h after topical application of SDS than those kept under low or normal humidity. The transepidermal water loss was altered significantly in the animals kept under high humidity for 2 weeks, although it was not altered during the first 7 days under either low or high humidity. Conclusions These results suggest that environmental humidity influences the sensitivity of skin to topical application of SDS and that increased sensitivity is not always associated with alteration of the water impermeability of the stratum corneum. [source]


Window pane condensation and high indoor vapour contribution , markers of an unhealthy indoor climate?

CLINICAL & EXPERIMENTAL ALLERGY, Issue 3 2000
Emenius
Objective The aim of this study was to investigate whether window pane condensation and indoor vapour contribution , 3 g/m3 could be used as indicators of defective air change rate, high indoor humidity and high mite allergen concentration in mattress dust. Methods Actual ventilation rate, indoor temperature, air humidity (AIH/RH) and concentrations of mite allergen were measured in 59 houses and compared with received outdoor temperatures and air humidity. Indoor vapour contribution defined as the difference between the indoor and the outdoor vapour concentration was calculated. Sensitivity, specificity, predictive values and accuracy were calculated for window pane condensation and high vapour contribution (, 3 g/m3), as indicators of defective ventilation (< 0.5 ACH), high indoor humidity (, 7 g/kg and , 45% RH) and high mite allergen concentration in mattress dust (, 2 ,g/g). Results All houses with high humidity and high mite allergen concentrations were positive for the two indicators (high sensitivity), but with a specificity of only 50% so that half of the houses with reported condensation and high vapour contribution turned out to be low pollution houses with adequate high ventilation levels. Both indicators had high negative predictive values and absence of the two indicators almost certainly (97,100%) excluded high indoor pollution with high humidity and high mite concentrations. Overall more than 70% of the dwellings were correctly classified by the two indicators. Conclusion Absence of window pane condensation on double-glazed windows and low indoor vapour contribution (< 3 g/m3) during the winter are true markers of a dwelling without high indoor air humidity and without high mite allergen concentrations in mattress dust in houses in a cold temperate climate with subzero outdoor temperatures. The presence of the two indicators is associated with a 18,45% risk of high humidity and mite allergen concentrations so in this latter group further measurements are needed for correct classification. [source]