Home About us Contact | |||
High Cell Density Cultures (high + cell_density_culture)
Selected AbstractsEnhanced glutathione production by using low-pH stress coupled with cysteine addition in the treatment of high cell density culture of Candida utilisLETTERS IN APPLIED MICROBIOLOGY, Issue 5 2008G. Liang Abstract Aims:, To investigate the effects of pH stress coupled with cysteine addition on glutathione (GSH) production in the treatment of high cell density culture of Candida utilis. Methods and Results:, We have previously observed that most Candida utilis cells remained viable after being subjected to pH at 1·2 for 3 h and that some intracellular GSH leaked into the medium. A cysteine addition strategy was applied in fed-batch production of GSH. A single cysteine addition resulted in higher GSH yield than two separate additions without pH stress. An increase in intracellular GSH content triggered inhibition of ,-glutamylcysteine synthetase (,-GCS). A strategy that combines cysteine addition with low-pH stress was developed to relieve the inhibition of ,-GCS. Conclusion:, Without pH stress, single shot and double shot cysteine addition yielded a total GSH of 1423 and 1325 mg l,1. In comparison, a low-pH stress counterpart resulted in a total GSH of 1542 and 1730 mg l,1, respectively. With low-pH stress, we observed GSH secretion into the medium at 673 and 558 mg l,1 and an increase in the ,-GCS activity by 1·2- and 1·5-fold, respectively. The specific GSH production yield increased from 1·76% to 1·91% (w/w) for single shot, and 1·64% to 2·14% for double shots. Significance and Impact of the Study:, Low-pH shift was applied to alleviate the feedback inhibition of intracellular GSH on ,-GCS activity by secreting GSH into the medium. This strategy is coupled with cysteine addition to enhance GSH production in Candida utilis. [source] Design and validation of a pulsatile perfusion bioreactor for 3D high cell density culturesBIOTECHNOLOGY & BIOENGINEERING, Issue 6 2009Julie A. Chouinard Abstract This study presents the design and validation of a pulsatile flow perfusion bioreactor able to provide a suitable environment for 3D high cell density cultures for tissue engineering applications. Our bioreactor system is mobile, does not require the use of traditional cell culture incubators and is easy to sterilize. It provides real-time monitoring and stable control of pH, dissolved oxygen concentration, temperature, pressure, pulsation frequency, and flow rate. In this bioreactor system, cells are cultured in a gel within a chamber perfused by a culture medium fed by hollow fibers. Human umbilical vein endothelial cells (HUVEC) suspended in fibrin were found to be living, making connections and proliferating up to five to six times their initial seeding number after a 48-h culture period. Cells were uniformly dispersed within the 14.40,mm,× 17.46,mm,×,6.35,mm chamber. Cells suspended in 6.35-mm thick gels and cultured in a traditional CO2 incubator were found to be round and dead. In control experiments carried out in a traditional cell culture incubator, the scarcely found living cells were mostly on top of the gels, while cells cultured under perfusion bioreactor conditions were found to be alive and uniformly distributed across the gel. Biotechnol. Bioeng. 2009; 104: 1215,1223. © 2009 Wiley Periodicals, Inc. [source] The effect of heating rate on Escherichia coli metabolism, physiological stress, transcriptional response, and production of temperature-induced recombinant protein: A scale-down studyBIOTECHNOLOGY & BIOENGINEERING, Issue 2 2009Luis Caspeta Abstract At the laboratory scale, sudden step increases from 30 to 42°C can be readily accomplished when expressing heterologous proteins in heat-inducible systems. However, for large scale-cultures only slow ramp-type increases in temperature are possible due to heat transfer limitations, where the heating rate decreases as the scale increases. In this work, the transcriptional and metabolic responses of a recombinant Escherichia coli strain to temperature-induced synthesis of pre-proinsulin in high cell density cultures were examined at different heating rates. Heating rates of 6, 1.7, 0.8, and 0.4°C/min were tested in a scale-down approach to mimic fermentors of 0.1, 5, 20, and 100 m3, respectively. The highest yield and concentration of recombinant protein was obtained for the slowest heating rate. As the heating rate increased, the yield and maximum recombinant protein concentration decreased, whereas a larger fraction of carbon skeletons was lost as acetate, lactate, and formate. Compared to 30°C, the mRNA levels of selected heat-shock genes at 38 and 42°C, as quantified by qRT-PCR, increased between 2- to over 42-fold when cultures were induced at 6, 1.7, and 0.8°C/min, but no increase was observed at 0.4°C/min. Only small increases (between 1.5- and 4-fold) in the expression of the stress genes spoT and relA were observed at 42°C for cultures induced at 1.7 and 6°C/min, suggesting that cells subjected to slow temperature increases can adapt to stress. mRNA levels of genes from the transcription,translation machinery (tufB, rpoA, and tig) decreased between 40% and 80% at 6, 1.7 and 0.8°C/min, whereas a transient increase occurred for 0.4°C/min at 42°C. mRNA levels of the gene coding for pre-proinsulin showed a similar profile to transcripts of heat-shock genes, reflecting a probable analogous induction mechanism. Altogether, the results obtained indicate that slow heating rates, such as those likely to occur in conventional large-scale fermentors, favored heterologous protein synthesis by the thermo-inducible expression system used in this report. Knowledge of the effect of heating rate on bacterial physiology and product formation is useful for the rational design of scale-down and scale-up strategies and optimum recombinant protein induction schemes. Biotechnol. Bioeng. 2009;102: 468,482. © 2008 Wiley Periodicals, Inc. [source] Recombinant shrimp (Litopenaeus vannamei) trypsinogen production in Pichia pastorisBIOTECHNOLOGY PROGRESS, Issue 5 2009Martha Guerrero-Olazarán Abstract Shrimp (Litopenaeus vannamei) trypsinogen has never been isolated from its natural source. To assess the production of L. vannamei trypsinogen, we engineered Pichia pastoris strains and evaluated two culture approaches with three induction culture media, to produce recombinant shrimp trypsinogen for the first time. The trypsinogen II cDNA was fused to the signal sequence of the Saccharomyces cerevisiae alpha mating factor, placed under the control of the P. pastoris AOX1 promoter, and integrated into the genome of P. pastoris host strain GS115. Using standard culture conditions for heterologous gene induction of a GS115 strain in shake flasks, recombinant shrimp trypsinogen was not detected by SDS-PAGE and Western blot analysis. Growth kinetics revealed a toxicity of recombinant shrimp trypsinogen or its activated form over the cell host. Thus, a different culture approach was tested for the induction step, involving the use of high cell density cultures, a higher frequency of methanol feeding (every 12 h), and a buffered minimal methanol medium supplemented with sorbitol or alanine; alanine supplemented medium was found to be more efficient. After 96 h of induction with alanine supplemented medium, a 29-kDa band from the cell-free culture medium was clearly observed by SDS-PAGE, and confirmed by Western blot to be shrimp trypsinogen, at a concentration of 14 ,g/mL. Our results demonstrate that high density cell cultures with alanine in the induction medium allow the production of recombinant shrimp trypsinogen using the P. pastoris expression system, because of improved cell viability and greater stability of the recombinant trypsinogen. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009 [source] |