High Activation Energy (high + activation_energy)

Distribution by Scientific Domains


Selected Abstracts


Thermal Decomposition of NTO: An Explanation of the High Activation Energy

PROPELLANTS, EXPLOSIVES, PYROTECHNICS, Issue 4 2007
Valery
Abstract Burning rate characteristics of the low-sensitivity explosive 5-nitro-1,2,4-triazol-3-one (NTO) have been investigated in the pressure interval of 0.1,40,MPa. The temperature distribution in the combustion wave of NTO has been measured at pressures of 0.4,2.1,MPa. Based on burning rate and thermocouple measurements, rate constants of NTO decomposition in the molten layer at 370,425,°C have been derived from a condensed-phase combustion model (k=8.08,1013,exp(,19420/T) s,1. NTO vapor pressure above the liquid (ln P=,9914.4/T+14.82) and solid phases (ln P=,12984.4/T+20.48) has been calculated. Decomposition rates of NTO at low temperatures have been defined more exactly and it has been shown that in the interval of 180,230,°C the decomposition of solid NTO is described by the following expression: k=2.9,1012,exp(,20680/T). Taking into account the vapor pressure data obtained, the decomposition of NTO in the gas phase at 240,250,°C has been studied. Decomposition rate constants in the gaseous phase have been found to be comparable with rate constants in the solid state. Therefore, a partial decomposition in the gas cannot substantially increase the total rate. High values of the activation energy for solid-state decomposition of NTO are not likely to be connected with a sub-melting effect, because decomposition occurs at temperatures well below the melting point. It has been suggested that the abnormally high activation energy in the interval of 230,270,°C is a consequence of peculiarities of the NTO transitional process rather than strong bonds in the molecule. In this area, the NTO molecule undergoes isomerization into the aci -form, followed by C3-N2 heterocyclic bond rupture. Both processes depend on temperature, resulting in an abnormally high value of the observed activation energy. [source]


A Quantum-Chemical Study on Understanding the Dehydrogenation Mechanisms of Metal (Na, K, or Mg) Cation Substitution in Lithium Amide Nanoclusters

ADVANCED FUNCTIONAL MATERIALS, Issue 12 2010
Lanlan Li
Abstract The hydrogen-releasing activity of (LiNH2)6,LiH nanoclusters and metal (Na, K, or Mg)-cation substituted nanoclusters (denoted as (NaNH2)(LiNH2)5, (KNH2)(LiNH2)5, and (MgNH)(LiNH2)5) are studied using ab initio molecular orbital theory. Kinetics results show that the rate-determining step for the dehydrogenation of the (LiNH2)6,LiH nanocluster is the ammonia liberation from the amide with a high activation energy of 167.0,kJ,mol,1 (at B3LYP/6-31,+,G(d,p) level). However, metal (Na, K, Mg)-cation substitution in amide,hydride nanosystems reduces the activation energies for the rate-determining step to 156.8, 149.6, and 144.1,kJ,mol,1 (at B3LYP/6-31,+,G(d,p) level) for (NaNH2)(LiNH2)5, (KNH2)(LiNH2)5, and (MgNH)(LiNH2)5, respectively. Furthermore, only the ,NH2 group bound to the Na/K cation is destabilized after Na/K cation substitution, indicating that the improving effect from Na/K-cation substitution is due to a short-range interaction. On the other hand, Mg-cation substitution affects all ,NH2 groups in the nanocluster, resulting in weakened N,H covalent bonding together with stronger ionic interactions between Li and the ,NH2 group. The present results shed light on the dehydrogenation mechanisms of metal-cation substitution in lithium amide,hydride nanoclusters and the application of (MgNH)(LiNH2)5 nanoclusters as promising hydrogen-storage media. [source]


Thermal dehydration kinetics of a rare earth hydroxide, Gd(OH)3

INTERNATIONAL JOURNAL OF CHEMICAL KINETICS, Issue 2 2007
Chengkang Chang
This paper reports the synthesis, characterization, and dehydration kinetics of a rare earth hydroxide, Gd(OH)3. Uniform rod-like Gd(OH)3 powder was prepared by a colloidal hydrothermal method. The powder thus obtained dehydrated into its oxide form in a two-step process, where crystalline GdOOH was obtained as the intermediate phase. Crystal structure study revealed a monoclinic structure for GdOOH, with space group P2/1m and lattice parameters a = 6.0633, b = 3.7107, c = 4.3266, and , = 108.669. The first-step dehydration follows the F2 mechanism, while the second step follows the F1 model, indicating that both the steps are controlled by nucleation/growth mechanism. The activation energy Ea and frequency factor A are 231±12 kJ/mol and 2.08 × 1018 s,1 for the first step and 496 ± 32 kJ/mol and 7.88 × 1033 s,1 for the second step, respectively. Such high activation energy calculated from the experimental data can be ascribed to the high bonding energy of GdO bond, and the difference in activation energy for the two steps is due to the change in the bond length of hexagonal Gd(OH)3 and monoclinic GdOOH. © 2006 Wiley Periodicals, Inc. Int J Chem Kinet 39: 75,81, 2007 [source]


Phase Evolution During Formation of SrAl2O4 from SrCO3 and ,-Al2O3/AlOOH

JOURNAL OF THE AMERICAN CERAMIC SOCIETY, Issue 9 2007
Yu-Lun Chang
Through the execution of experimental investigation, thermogravimetry, X-ray diffractometry, Fourier transform-infrared spectrometry, transmission electron microscopy, and energy-dispersive spectrometry, a variant reaction mechanism model was proposed for the solid-state reaction between SrCO3 and Al2O3/AlOOH for formation of SrAl2O4 material. The solid-state reaction is observed to be dependent on the calcination temperature. At temperatures lower than the transformation temperature of SrCO3 from orthorhombic to hexagonal (920°C), the reaction is attributed to the interfacial reaction between SrCO3 and alumina. Conversely, at temperatures higher than that, the solid-state reaction is dominated by the diffusion of Al3+ ions into the SrCO3 lattice. In this mechanism, two metastable species, hexagonal SrCO3 and hexagonal SrAl2O4, were observed. The activation energies of SrCO3 decomposition in the solid-state reaction also support these results. The interfacial reaction at low temperatures is characterized by a high activation energy of ,130 kJ/mol; whereas, in the reaction at higher temperatures, the activation energy of SrCO3 decomposition decreases to 34 kJ/mol. [source]


Anti-mitotic activity of colchicine and the structural basis for its interaction with tubulin

MEDICINAL RESEARCH REVIEWS, Issue 1 2008
Bhabatarak Bhattacharyya
Abstract In this review, an attempt has been made to throw light on the mechanism of action of colchicine and its different analogs as anti-cancer agents. Colchicine interacts with tubulin and perturbs the assembly dynamics of microtubules. Though its use has been limited because of its toxicity, colchicine can still be used as a lead compound for the generation of potent anti-cancer drugs. Colchicine binds to tubulin in a poorly reversible manner with high activation energy. The binding interaction is favored entropically. In contrast, binding of its simple analogs AC or DAAC is enthalpically favored and commences with comparatively low activation energy. Colchicine,tubulin interaction, which is normally pH dependent, has been found to be independent of pH in the presence of microtubule-associated proteins, salts or upon cleavage of carboxy termini of tubulin. Biphasic kinetics of colchicines,tubulin interaction has been explained in light of the variation in the residues around the drug-binding site on , -tubulin. Using the crystal structure of the tubulin,DAMAcolchicine complex, a detailed discussion on the pharmacophore concept that explains the variation of affinity for different colchicine site inhibitors (CSI) has been discussed. © 2007 Wiley Periodicals, Inc. Med Res Rev, 28, No. 1, 155,183, 2008 [source]


Thermal Decomposition of NTO: An Explanation of the High Activation Energy

PROPELLANTS, EXPLOSIVES, PYROTECHNICS, Issue 4 2007
Valery
Abstract Burning rate characteristics of the low-sensitivity explosive 5-nitro-1,2,4-triazol-3-one (NTO) have been investigated in the pressure interval of 0.1,40,MPa. The temperature distribution in the combustion wave of NTO has been measured at pressures of 0.4,2.1,MPa. Based on burning rate and thermocouple measurements, rate constants of NTO decomposition in the molten layer at 370,425,°C have been derived from a condensed-phase combustion model (k=8.08,1013,exp(,19420/T) s,1. NTO vapor pressure above the liquid (ln P=,9914.4/T+14.82) and solid phases (ln P=,12984.4/T+20.48) has been calculated. Decomposition rates of NTO at low temperatures have been defined more exactly and it has been shown that in the interval of 180,230,°C the decomposition of solid NTO is described by the following expression: k=2.9,1012,exp(,20680/T). Taking into account the vapor pressure data obtained, the decomposition of NTO in the gas phase at 240,250,°C has been studied. Decomposition rate constants in the gaseous phase have been found to be comparable with rate constants in the solid state. Therefore, a partial decomposition in the gas cannot substantially increase the total rate. High values of the activation energy for solid-state decomposition of NTO are not likely to be connected with a sub-melting effect, because decomposition occurs at temperatures well below the melting point. It has been suggested that the abnormally high activation energy in the interval of 230,270,°C is a consequence of peculiarities of the NTO transitional process rather than strong bonds in the molecule. In this area, the NTO molecule undergoes isomerization into the aci -form, followed by C3-N2 heterocyclic bond rupture. Both processes depend on temperature, resulting in an abnormally high value of the observed activation energy. [source]


What a Role did Histidine Residue Play in Arylamine N -Acetyltransferase 2 Acetylation?

CHINESE JOURNAL OF CHEMISTRY, Issue 10 2006
A Quantum Chemistry Study
Abstract Arylamine N -acetyltransferases (NATs, EC 2.3.1.5) catalyze an acetyl group transfer from acetyl coenzyme A (AcCoA) to primary arylamines and play a very important role in the metabolism and bioactivation of drugs and carcinogens. Experiments revealed that His-107 was likely the residues responsible for mediating acetyl transfer. The full catalytic mechanism of acetylation process has been examined by density functional theory. The results indicate that, if the acetyl group is directly transferred from the donor, p -nitrophenyl acetate, to the acceptor, cysteine, the high activation energy will be a great hindrance. These energies have dropped in a little range of 20,25 kJ/mol when His-107 assisted the transfer process. However, when protonated His-107 mediated the reaction, the activation energies have been dropped about 73,85 kJ/mol. Our calculations strongly supported an enzyme acetylation mechanism that experiences a thiolate-imidazolium pair, and verified the presumption from experiments. [source]