Home About us Contact | |||
HIV-1 Virus (hiv-1 + virus)
Selected AbstractsAn optimized nested polymerase chain reaction (PCR) approach allows detection and characterization of human immunodeficiency virus type 1 (HIV-1) env and gag genes from clinical samplesJOURNAL OF CLINICAL LABORATORY ANALYSIS, Issue 2 2008Dayse Locateli Abstract The needs for development and/or improvement of molecular approaches for microorganism detection and characterization such as polymerase chain reaction (PCR) are of high interest due their sensitivity and specificity when compared to traditional microbiological techniques. Considering the worldwide importance of human immunodeficiency virus type 1 (HIV-1) infection, it is essential that such approaches consider the genetic variability of the virus, the heterogeneous nature of the clinical samples, the existence of contaminants and inhibitors, and the consequent needs for standardization in order to guarantee the reproducibility of the methods. In this work we describe a nested PCR assay targeting HIV-1 virus gag and env genes, allowing specific and sensitive diagnosis and further direct characterization of clinical samples. The method described herein was tested on clinical samples and allowed the detection of HIV-1 presence in all samples tested for the gag gene and 90.9% for the env gene, revealing sensitivities of 1,fg and 100,fg, respectively. Also, no cross-reactions were observed with DNA from infected and noninfected patients and the method allowed detection of the env and gag genes on an excess of 108 and 104 of human deoxyribonucleic acid (DNA), respectively. Furthermore, it was possible to direct sequence all amplified products, which allowed the sub typing of the virus in clinical samples. J. Clin. Lab. Anal. 22:106,113, 2008. © 2008 Wiley-Liss, Inc. [source] HIV-Tat protein induces oxidative and inflammatory pathways in brain endotheliumJOURNAL OF NEUROCHEMISTRY, Issue 1 2003Michal Toborek Abstract Impaired function of the brain vasculature might contribute to the development of HIV-associated dementia. For example, injury or dysfunction of brain microvascular endothelial cells (BMEC) can lead to the breakdown of the blood,brain barrier (BBB) and thus allow accelerated entry of the HIV-1 virus into the CNS. Mechanisms of injury to BMEC during HIV-1 infection are not fully understood, but the viral gene product Tat may be, at least in part, responsible for this effect. Tat can be released from infected perivascular macrophages in the CNS of patients with AIDS, and thus BMEC can be directly exposed to high concentrations of this protein. To study oxidative and inflammatory mechanisms associated with Tat-induced toxicity, BMEC were exposed to increasing doses of Tat1,72, and markers of oxidative stress, as well as redox-responsive transcription factors such as nuclear factor-,B (NF-,B) and activator protein-1 (AP-1), were measured. Tat1,72 treatment markedly increased cellular oxidative stress, decreased levels of intracellular glutathione and activated DNA binding activity and transactivation of NF-,B and AP-1. To determine if Tat1,72 can stimulate inflammatory responses in brain endothelium in vivo, expression of monocyte chemoattractant protein-1 (MCP-1), an NF-,B and AP-1-dependent chemokine, was studied in brain tissue in mice injected with Tat1,72 into the right hippocampus. Tat1,72 markedly elevated the MCP-1 mRNA levels in brain tissue. In addition, a double immunohistochemistry study revealed that MCP-1 protein was markedly overexpressed on brain vascular endothelium. These data indicate that Tat1,72 can induce redox-related inflammatory responses both in in vitro and in vivo environments. These changes can directly lead to disruption of the BBB. Thus, Tat can play an important role in the development of detrimental vascular changes in the brains of HIV-infected patients. [source] Temperature dependence and resonance assignment of 13C NMR spectra of selectively and uniformly labeled fusion peptides associated with membranesMAGNETIC RESONANCE IN CHEMISTRY, Issue 2 2004Michele L. Bodner Abstract HIV-1 and influenza viral fusion peptides are biologically relevant model fusion systems and, in this study, their membrane-associated structures were probed by solid-state NMR 13C chemical shift measurements. The influenza peptide IFP-L2CF3N contained a 13C carbonyl label at Leu-2 and a 15N label at Phe-3 while the HIV-1 peptide HFP-UF8L9G10 was uniformly 13C and 15N labeled at Phe-8, Leu-9 and Gly-10. The membrane composition of the IFP-L2CF3N sample was POPC,POPG (4:1) and the membrane composition of the HFP-UF8L9G10 sample was a mixture of lipids and cholesterol which approximately reflects the lipid headgroup and cholesterol composition of host cells of the HIV-1 virus. In one-dimensional magic angle spinning spectra, labeled backbone 13C were selectively observed using a REDOR filter of the 13C,15N dipolar coupling. Backbone chemical shifts were very similar at ,50 and 20°C, which suggests that low temperature does not appreciably change the peptide structure. Relative to ,50°C, the 20°C spectra had narrower signals with lower integrated intensity, which is consistent with greater motion at the higher temperature. The Leu-2 chemical shift in the IFP-L2CF3N sample correlates with a helical structure at this residue and is consistent with detection of helical structure by other biophysical techniques. Two-dimensional 13C,13C correlation spectra were obtained for the HFP-UF8L9G10 sample and were used to assign the chemical shifts of all of the 13C labels in the peptide. Secondary shift analysis was consistent with a ,-strand structure over these three residues. The high signal-to-noise ratio of the 2D spectra suggests that membrane-associated fusion peptides with longer sequences of labeled amino acids can also be assigned with 2D and 3D methods. Copyright © 2004 John Wiley & Sons, Ltd. [source] Chemistry, biological activity, and chemotherapeutic potential of betulinic acid for the prevention and treatment of cancer and HIV infectionMEDICINAL RESEARCH REVIEWS, Issue 1 2004Robert H. Cichewicz Abstract 3,-Hydroxy-lup-20(29)-en-28-oic acid (betulinic acid) is a pentacyclic lupane-type triterpene that is widely distributed throughout the plant kingdom. A variety of biological activities have been ascribed to betulinic acid including anti-inflammatory and in vitro antimalarial effects. However, betulinic acid is most highly regarded for its anti-HIV-1 activity and specific cytotoxicity against a variety of tumor cell lines. Interest in developing even more potent anti-HIV agents based on betulinic acid has led to the discovery of a host of highly active derivatives exhibiting greater potencies and better therapeutic indices than some current clinical anti-HIV agents. While its mechanism of action has not been fully determined, it has been shown that some betulinic acid analogs disrupt viral fusion to the cell in a post-binding step through interaction with the viral glycoprotein gp41 whereas others disrupt assembly and budding of the HIV-1 virus. With regard to its anticancer properties, betulinic acid was previously reported to exhibit selective cytotoxicity against several melanoma-derived cell lines. However, more recent work has demonstrated that betulinic acid is cytotoxic against other non-melanoma (neuroectodermal and malignant brain tumor) human tumor varieties. Betulinic acid appears to function by means of inducing apoptosis in cells irrespective of their p53 status. Because of its selective cytotoxicity against tumor cells and favorable therapeutic index, even at doses up to 500 mg/kg body weight, betulinic acid is a very promising new chemotherapeutic agent for the treatment of HIV infection and cancer. © 2003 Wiley Periodicals, Inc. Med Res Rev, 24, No. 1, 90,114, 2004 [source] |