Home About us Contact | |||
Histidine Ligands (histidine + ligand)
Selected AbstractsSimilar active sites in lysostaphins and D-Ala-D-Ala metallopeptidasesPROTEIN SCIENCE, Issue 4 2004Matthias Bochtler Abstract Specific peptidases exist for nearly every amide linkage in peptidoglycan. In several cases, families of peptidoglycan hydrolases with different specificities turned out to be related. Here we show that lysostaphin-type peptidases and D-Ala-D-Ala metallopeptidases have similar active sites and share a core folding motif in otherwise highly divergent folds. The central Zn2+ is tetrahedrally coordinated by two histidines, an aspartate, and a water molecule. The Zn2+ chelating residues occur in the order histidine, aspartate, histidine in all sequences and contact the metal via the N,, the O,, and the N,, respectively. The identity of the other active-site residues varies, but in all enzymes of known structure except for VanX, a conserved histidine is present two residues upstream of the second histidine ligand to the Zn2+. As the same arrangement of active-site residues is also found in the N-terminal, cryptic peptidase domain of sonic hedgehog, we propose that this arrangement of active-site residues be called the "LAS" arrangement, because it is present in lysostaphin-type enzymes, D-Ala-D-Ala metallopeptidases, and in the cryptic peptidase in the N-domain of sonic hedgehog. [source] Stability Constants and Dissociation Rates of the EDTMP Complexes of Samarium(III) and Yttrium(III)EUROPEAN JOURNAL OF INORGANIC CHEMISTRY, Issue 30 2008Ferenc Krisztián Kálmán Abstract The stability constants of Sm(EDTMP) (log,KML = 20.71) and Y(EDTMP) (log,KML = 19.19) were determined by a competition reaction between the Ln3+ ion (Ln3+ = Sm3+ or Y3+) and Cu2+ for the EDTMP ligand by spectrophotometry at pH , 10, in the presence of an excess amount of citrate (0.15 M NaCl, 25 °C). For determining the stability constants of Cu(EDTMP) (log,KML = 19.36) and Ca(EDTMP) (log,KML = 8.71) pH,potentiometry was used. In the pH range 4,9 the EDTMP complexes are present in the form of nonprotonated and mono-, di- and triprotonated species. The Ca2+ ion forms a dinuclear complex with Ln(EDTMP). In a simplified blood plasma model consisting of Sm3+, Ca2+ and Zn2+ metal ions, EDTMP, citrate, cysteine and histidine ligands, Sm3+ is practically present in the form of [Sm(HEDTMP)Ca]2,, whereas Zn2+ predominantly forms [Zn(HEDTMP)]5, and [Zn(H2EDTMP)]4, complexes. For studying the dissociation rates of the complexes, the kinetics of the metal exchange (transmetallation) reactions between the Ln(EDTMP) complexes and Cu2+,citrate were investigated in the pH range 7,9 by the stopped-flow method. The rates of the exchange reactions are independent of the Cu2+ concentration and increase with the H+ concentration. The rate constants, characterizing the proton-assisted dissociation of the Ln(EDTMP) complexes, are several orders of magnitude higher than those of the similar Ln(EDTA) complexes, because the protonation constants of Ln(EDTMP) are high and the protonated Ln(HEDTMP) and Ln(H2EDTMP) species are present in higher concentration. The half-times of dissociation of Sm(EDTMP) and Y(EDTMP) at pH = 7.4 and 25 °C are 4.9 and 7.5 s, respectively. These relatively short dissociation half-time values do not predict the deposition of Ln3+ ions in bones in the form of intact Ln(EDTMP) complexes. It is more probable that sorption of the EDTMP ligand and Sm3+ or Y3+ ions occurs independently after the dissociation of complexes.(© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2008) [source] XAFS studies of nitrogenase: the MoFe and VFe proteins and the use of crystallographic coordinates in three-dimensional EXAFS data analysisJOURNAL OF SYNCHROTRON RADIATION, Issue 1 2003Richard W. Strange This paper reports a three-dimensional EXAFS refinement of the Mo coordination sphere of the FeMoco cluster of the dithionite-reduced MoFe protein from Klebsiella pneumoniae nitrogenase (Kp1) using the 1.6,Å-resolution crystallographic coordinates. At this resolution, the positions of the heavy (Fe and S) atoms of the cluster are well determined and there is excellent agreement between the crystallographic and EXAFS models. However, the lighter homocitrate and histidine ligands are poorly determined in the crystal structure, and it is shown that the application of EXAFS-derived distance restraints during the early stages of crystallographic refinement provides a means of substantially improving (by ,0.1,Å) the final crystallographic model. The consistency of the EXAFS analysis with the crystallographic information in this case justifies applications of EXAFS to cases where protein crystal structures are absent. Thus, the VFe protein of V-nitrogenase has been shown by EXAFS to possess a V-atom site catalytically similar to the well characterized MoFe-nitrogenases, with V replacing Mo. [source] Multiple bacteria encode metallothioneins and SmtA-like zinc fingersMOLECULAR MICROBIOLOGY, Issue 5 2002Claudia A. Blindauer Summary Zinc is essential but toxic in excess. Bacterial metallothionein, SmtA from Synechococcus PCC 7942, sequesters and detoxifies four zinc ions per molecule and contains a zinc finger structurally similar to eukaryotic GATA. The dearth of other reported bacterial metallothioneins has been surprising. Here we describe related bacterial metallothioneins (BmtA) from Anabaena PCC 7120, Pseudomonas aeruginosa and Pseudomonas putida that bind multiple zinc ions with high stability towards protons. Thiol modification demonstrates that cysteine coordinates zinc in all of these proteins. Additionally, 111Cd-NMR, and 111Cd-edited 1H-NMR, identified histidine ligands in Anabaena PCC 7120 BmtA, analogous to SmtA. A related Escherichia coli protein bound only a single zinc ion, via four cysteine residues, with low stability towards protons; 111Cd-NMR and 111Cd-edited 1H-NMR confirmed exclusive cysteine-coordination, and these cysteine residues reacted rapidly with 5,5,-dithiobis-(2-nitrobenzoic acid). 1H-NMR of proteins from P. aeruginosa, Anabaena PCC 7120 and E. coli generated fingerprints diagnostic for the GATA-like zinc finger fold of SmtA. These studies reveal first the existence of multiple bacterial metallothioneins, and second proteins with SmtA-like lone zinc fingers, devoid of a cluster, and designated GatA. We have identified 12 smtA -like genes in sequence databases including four of the gatA type. [source] Cloning, purification, crystallization and X-ray crystallographic analysis of Ignicoccus hospitalis neelaredoxinACTA CRYSTALLOGRAPHICA SECTION F (ELECTRONIC), Issue 5 2010Filipa G. Pinho Superoxide reductases (SORs) are metalloproteins which constitute the most recently identified oxygen-detoxification system in anaerobic and microaerobic bacteria and archaea. SORs are involved in scavenging superoxide radicals from the cell by catalyzing the reduction of superoxide () to hydrogen peroxide and are characterized by a catalytic nonhaem iron centre coordinated by four histidine ligands and one cysteine ligand. Ignicoccus hospitalis, a hyperthermophilic crenarchaeon, is known to have a neelaredoxin-type SOR that keeps toxic oxygen species levels under control. Blue crystals of recombinant I. hospitalis oxidized neelaredoxin (14.1,kDa, 124 residues) were obtained. These crystals diffracted to 2.4,Å resolution in-house at room temperature and belonged to the hexagonal space group P6222 or P6422, with unit-cell parameters a = b = 108, c = 64,Å. Cell-content analysis indicated the presence of one monomer in the asymmetric unit. [source] Dynamic binding capacity of plasmid DNA in histidine,agarose chromatographyBIOMEDICAL CHROMATOGRAPHY, Issue 9 2007F. Sousa Abstract The use of histidine,agarose chromatography in the purification of supercoiled (sc) plasmid DNA (pDNA) from Escherichia coli lysates has been reported recently. In the current work we describe a set of breakthrough experiments which were designed to study the effect of parameters such as flow-rate, temperature, concentration and conformation on the dynamic binding capacity of pDNA to the histidine support. One of the most striking results shows that the dynamic binding capacity for sc pDNA decreases linearly from 250.8 to 192.0 µg sc pDNA/mL when the temperature is varied from 5 to 24°C. This behaviour was attributed to temperature-induced, pre-denaturation conformational changes which promote the removal of negative superhelical turns in sc pDNA molecules and decrease the interaction of DNA bases with the histidine ligands. The capacity for sc pDNA was highly improved when using feeds with higher pDNA concentrations, a phenomenon which was attributed to the fact that pDNA molecules in more concentrated solutions are significantly compressed. A maximum capacity of 530.0 µg pDNA/mL gel was obtained when using a 125 µg/mL pDNA feed at 1 mL/min and 5°C, a figure which is comparable to the plasmid capacity values published for other chromatographic supports. Finally, a more than 2-fold increase in capacity was obtained when changing from open circular to sc pDNA solutions. Overall, the results obtained provide valuable information for the future development and implementation of histidine chromatography in the process scale purification of pDNA. Copyright © 2007 John Wiley & Sons, Ltd. [source] |