Hippocampus-dependent Learning (hippocampus-dependent + learning)

Distribution by Scientific Domains


Selected Abstracts


Muscarine activates the sodium,calcium exchanger via M3 receptors in basal forebrain neurons

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 8 2006
Changqing Xu
Abstract Neurons of the medial septum/diagonal band of Broca (MSDB) project to the hippocampus. Muscarinic cholinergic mechanisms within the MSDB are potent modulators of hippocampal functions; intraseptal scopolamine disrupts and intraseptal carbachol facilitates hippocampus-dependent learning and memory tasks, and the associated hippocampal theta rhythm. In earlier work, we demonstrated that, within the MSDB, the septohippocampal GABAergic but not cholinergic neurons are the primary target of muscarinic manipulations and that muscarinic activation of septohippocampal GABAergic neurons is mediated directly via M3 receptors. In the present study, we examined the ionic mechanism(s) underlying the excitatory actions of muscarine in these neurons. Using whole-cell patch-clamp recording techniques in rat brain slices, we demonstrated that M3 receptor-mediated muscarinic activation of MSDB neurons is dependent on external Na+ and is also reduced by bath-applied Ni2+ and KB-R7943 as well as by replacing external Na+ with Li+, suggesting a primary involvement of the Na+,Ca2+ exchanger. We conclude that the M3 receptor-mediated muscarinic activation of MSDB septohippocampal GABA-type neurons, that is important for cognitive functioning, is mediated via activation of the Na+,Ca2+ exchanger. [source]


Increased neurogenesis and brain-derived neurotrophic factor in neurokinin-1 receptor gene knockout mice

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 7 2003
Sara Morcuende
Abstract It has previously been shown that chronic treatment with antidepressant drugs increases neurogenesis and levels of brain-derived neurotrophic factor in the hippocampus. These changes have been correlated with changes in learning and long-term potentiation and may contribute to the therapeutic efficacy of antidepressant drug treatment. Recently, antagonists at the neurokinin-1 receptor, the preferred receptor for the neuropeptide substance P, have been shown to have antidepressant activity. Mice with disruption of the neurokinin-1 receptor gene are remarkably similar both behaviourally and neurochemically to mice maintained chronically on antidepressant drugs. We demonstrate here that there is a significant elevation of neurogenesis but not cell survival in the hippocampus of neurokinin-1 receptor knockout mice. Neurogenesis can be increased in wild-type but not neurokinin-1 receptor knockout mice by chronic treatment with antidepressant drugs which preferentially target noradrenergic and serotonergic pathways. Hippocampal levels of brain-derived neurotrophic factor are also two-fold higher in neurokinin-1 receptor knockout mice, whereas cortical levels are similar. Finally, we examined hippocampus-dependent learning and memory but found no clear enhancement in neurokinin-1 receptor knockout mice. These data argue against a simple correlation between increased levels of neurogenesis or brain-derived neurotrophic factor and mnemonic processes in the absence of increased cell survival. They support the hypothesis that increased neurogenesis, perhaps accompanied by higher levels of brain-derived neurotrophic factor, may contribute to the efficacy of antidepressant drug therapy. [source]


Fragile X mental retardation protein is required for chemically-induced long-term potentiation of the hippocampus in adult mice

JOURNAL OF NEUROCHEMISTRY, Issue 3 2009
Yuze Shang
Abstract Fragile X syndrome (FXS), a common form of inherited mental retardation, is caused by the lack of fragile X mental retardation protein (FMRP). The animal model of FXS, Fmr1 knockout mice, have deficits in the Morris water maze and trace fear memory tests, showing impairment in hippocampus-dependent learning and memory. However, results for synaptic long-term potentiation (LTP), a key cellular model for learning and memory, remain inconclusive in the hippocampus of Fmr1 knockout mice. Here, we demonstrate that FMRP is required for glycine induced LTP (Gly-LTP) in the CA1 of hippocampus. This form of LTP requires activation of post-synaptic NMDA receptors and metabotropic glutamateric receptors, as well as the subsequent activation of extracellular signal-regulated kinase (ERK) 1/2. However, paired-pulse facilitation was not affected by glycine treatment. Genetic deletion of FMRP interrupted the phosphorylation of ERK1/2, suggesting the possible role of FMRP in the regulation of the activity of ERK1/2. Our study provide strong evidences that FMRP participates in Gly-LTP in the hippocampus by regulating the phosphorylation of ERK1/2, and that improper regulation of these signaling pathways may contribute to the learning and memory deficits observed in FXS. [source]


Impaired long-term depression in P2X3 deficient mice is not associated with a spatial learning deficit

JOURNAL OF NEUROCHEMISTRY, Issue 5 2006
Yue Wang
Abstract The hippocampus is a brain region critical for learning and memory processes believed to result from long-lasting changes in the function and structure of synapses. Recent findings suggest that ATP functions as a neurotransmitter or neuromodulator in the mammalian brain, where it activates several different types of ionotropic and G protein-coupled ATP receptors that transduce calcium signals. However, the roles of specific ATP receptors in synaptic plasticity have not been established. Here we show that mice lacking the P2X3 ATP receptor (P2X3KO mice) exhibit abnormalities in hippocampal synaptic plasticity that can be restored by pharmacological modification of calcium-sensitive kinase and phosphatase activities. Calcium imaging studies revealed an attenuated calcium response to ATP in hippocampal neurons from P2X3KO mice. Basal synaptic transmission, paired-pulse facilitation and long-term potentiation are normal at synapses in hippocampal slices from P2X3KO. However, long-term depression is severely impaired at CA1, CA3 and dentate gyrus synapses. Long-term depression can be partially rescued in slices treated with a protein phosphatase 1,2 A activator or by postsynaptic inhibition of calcium/calmodulin-dependent protein kinase II. Despite the deficit in hippocampal long-term depression, P2X3KO mice performed normally in water maze tests of spatial learning, suggesting that long-term depression is not critical for this type of hippocampus-dependent learning and memory. [source]