Hippocampal Subfields (hippocampal + subfield)

Distribution by Scientific Domains


Selected Abstracts


Correlation of Hippocampal Glucose Oxidation Capacity and Interictal FDG-PET in Temporal Lobe Epilepsy

EPILEPSIA, Issue 2 2003
Stefan Vielhaber
Summary: ,Purpose: Interictal [18F]fluorodeoxyglucose (FDG) positron emission tomography (PET) demonstrates temporal hypometabolism in the epileptogenic zone of 60,90% of patients with temporal lobe epilepsy. The pathophysiology of this finding is still unknown. Several studies failed to show a correlation between hippocampal FDG-PET hypometabolism and neuronal cell loss. Because FDG is metabolized by hexokinase bound to the outer mitochondrial membrane, we correlated the glucose-oxidation capacity of hippocampal subfields obtained after surgical resection with the corresponding hippocampal presurgical FDG-PET activity. Methods: In 16 patients with electrophysiologically confirmed temporal lobe epilepsy, we used high-resolution respirometry to determine the basal and maximal glucose-oxidation rates in 400-,m-thick hippocampal subfields obtained after dissection of human hippocampal slices into the CA1 and CA3 pyramidal subfields and the dentate gyrus. Results: We observed a correlation of the FDG-PET activity with the maximal glucose-oxidation rate of the CA3 pyramidal subfields (rp = 0.7, p = 0.003) but not for the regions CA1 and dentate gyrus. In accordance with previous studies, no correlation of the FDG-PET to the neuronal cell density of CA1, CA3, and dentate gyrus was found. Conclusions: The interictal hippocampal FDG-PET hypometabolism in patients with temporal lobe epilepsy is correlated to the glucose-oxidation capacity of the CA3 hippocampal subfield as result of impaired oxidative metabolism. [source]


Telencephalic binding sites for oxytocin and social organization: A comparative study of eusocial naked mole-rats and solitary cape mole-rats

THE JOURNAL OF COMPARATIVE NEUROLOGY, Issue 10 2010
Theodosis Kalamatianos
Abstract African mole-rats provide a unique taxonomic group for investigating the evolution and neurobiology of sociality. The two species investigated here display extreme differences in social organization and reproductive strategy. Naked mole-rats (NMRs) live in colonies, dominated by a queen and her consorts; most members remain nonreproductive throughout life but cooperate in burrowing, foraging, and caring for pups, for which they are not biological parents (alloparenting). In contrast, Cape mole-rats (CMRs) are solitary and intolerant of conspecifics, except during fleeting seasonal copulation or minimal maternal behavior. Research on other mammals suggests that oxytocin receptors at various telencephalic sites regulate social recognition, monogamous pair bonding, and maternal/allomaternal behavior. Current paradigms in this field derive from monogamous and polygamous species of New World voles, which are evolutionarily remote from Old World mole-rats. The present findings indicate that NMRs exhibit a considerably greater level of oxytocin receptor (OTR) binding than CMRs in the: nucleus accumbens; indusium griseum; central, medial, and cortical amygdaloid nuclei; bed nucleus of the stria terminalis; and CA1 hippocampal subfield. In contrast, OTR binding in the piriform cortex is intense in CMRs but undetectable in NMRs. We speculate that the abundance of OTR binding and oxytocin-neurophysin-immunoreactive processes in the nucleus accumbens of NMRs reflects their sociality, alloparenting behavior, and potential for reproductive attachments. In contrast, the paucity of oxytocin and its receptors at this site in CMRs may reflect a paucity of prosocial behaviors. Whether similarities in OTR expression between eusocial mole-rats and monogamous voles are due to gene conservation or convergent evolution remains to be determined. J. Comp. Neurol. 518:1792,1813, 2010. © 2009 Wiley-Liss, Inc. [source]


Subfield atrophy pattern in temporal lobe epilepsy with and without mesial sclerosis detected by high-resolution MRI at 4 Tesla: Preliminary results

EPILEPSIA, Issue 6 2009
Susanne G. Mueller
Summary Purpose:, High-resolution magnetic resonance imaging (MRI) at 4 Tesla depicts details of the internal structure of the hippocampus not visible at 1.5 Tesla, and so allows for in vivo parcellation of different hippocampal subfields. The aim of this study was to test if distinct subfield atrophy patterns can be detected in temporal lobe epilepsy (TLE) with mesial temporal sclerosis (TLE-MTS) and without (TLE-no) hippocampal sclerosis. Methods:, High-resolution T2 -weighted hippocampal images were acquired in 34 controls: 15 TLE-MTS and 18 TLE-no. Entorhinal cortex (ERC), subiculum (SUB), CA1, CA2, and CA3, and dentate (CA3&DG) volumes were determined using a manual parcellation scheme. Results:, TLE-MTS had significantly smaller ipsilateral CA1, CA2, CA3&DG, and total hippocampal volume than controls or TLE-no. Mean ipsilateral CA1 and CA3&DG z-scores were significantly lower than ipsilateral CA2, ERC, and SUB z-scores. There were no significant differences between the various subfield or hippocampal z-scores on either the ipsi- or the contralateral side in TLE-no. Using a z-score ,,2.0 to identify severe volume loss, the following atrophy patterns were found in TLE-MTS: CA1 atrophy, CA3&DG atrophy, CA1 and CA3&DG atrophy, and global hippocampal atrophy. Significant subfield atrophy was found in three TLE-no: contralateral SUB atrophy, bilateral CA3&DG atrophy, and ipsilateral ERC and SUB atrophy. Discussion:, Using a manual parcellation scheme on 4 Tesla high-resolution MRI, we found the characteristic ipsilateral CA1 and CA3&DG atrophy described in TLE-MTS. Seventeen percent of the TLE-no had subfield atrophy despite normal total hippocampal volume. These findings indicate that high-resolution MRI and subfield volumetry provide superior information compared to standard hippocampal volumetry. [source]


Correlation of Hippocampal Glucose Oxidation Capacity and Interictal FDG-PET in Temporal Lobe Epilepsy

EPILEPSIA, Issue 2 2003
Stefan Vielhaber
Summary: ,Purpose: Interictal [18F]fluorodeoxyglucose (FDG) positron emission tomography (PET) demonstrates temporal hypometabolism in the epileptogenic zone of 60,90% of patients with temporal lobe epilepsy. The pathophysiology of this finding is still unknown. Several studies failed to show a correlation between hippocampal FDG-PET hypometabolism and neuronal cell loss. Because FDG is metabolized by hexokinase bound to the outer mitochondrial membrane, we correlated the glucose-oxidation capacity of hippocampal subfields obtained after surgical resection with the corresponding hippocampal presurgical FDG-PET activity. Methods: In 16 patients with electrophysiologically confirmed temporal lobe epilepsy, we used high-resolution respirometry to determine the basal and maximal glucose-oxidation rates in 400-,m-thick hippocampal subfields obtained after dissection of human hippocampal slices into the CA1 and CA3 pyramidal subfields and the dentate gyrus. Results: We observed a correlation of the FDG-PET activity with the maximal glucose-oxidation rate of the CA3 pyramidal subfields (rp = 0.7, p = 0.003) but not for the regions CA1 and dentate gyrus. In accordance with previous studies, no correlation of the FDG-PET to the neuronal cell density of CA1, CA3, and dentate gyrus was found. Conclusions: The interictal hippocampal FDG-PET hypometabolism in patients with temporal lobe epilepsy is correlated to the glucose-oxidation capacity of the CA3 hippocampal subfield as result of impaired oxidative metabolism. [source]


Morphological alterations in the amygdala and hippocampus of mice during ageing

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 12 2002
Oliver Von Bohlen und Halbach
Abstract Declines in memory function and behavioural dysfunction accompany normal ageing in mammals. However, the cellular and morphological basis of this decline remains largely unknown. It was assumed for a long time that cell losses in the hippocampus accompany ageing. However, recent stereological studies have questioned this finding. In addition, the effect of ageing is largely unknown in another key structure of the memory system, the amygdala. In the present study, we have estimated neuronal density and total neuronal numbers as well as density of fragments of degenerated axons in different hippocampal subfields and amygdaloid nuclei. Comparisons were made among aged (21,26 months old) mice and normal adult littermates (8 months old). No significant volume loss occurs in the hippocampus of aged mice. Small but insignificant reductions in total neuronal numbers were found in the hippocampus and in the amygdaloid nuclei. In contrast to the mild effects of ageing upon neuronal numbers, fragments of degenerated axons were increased in both hippocampus and amygdala of aged mice. These data suggest that ageing does not induce prominent cell loss in the hippocampus or amygdala, but leads to degeneration of axons that innervate these forebrain structures. Thus, mechanisms underlying age-related dysfunction depend on parameters other than neuronal numbers, at least in the hippocampal formation and the amygdala. [source]


Increased expression of GluR2-flip in the hippocampus of the Wistar audiogenic rat strain after acute and kindled seizures

HIPPOCAMPUS, Issue 1 2010
Daniel Leite Góes Gitaí
Abstract The Wistar Audiogenic Rat (WAR) is an epileptic-prone strain developed by genetic selection from a Wistar progenitor based on the pattern of behavioral response to sound stimulation. Chronic acoustic stimulation protocols of WARs (audiogenic kindling) generate limbic epileptogenesis, confirmed by ictal semiology, amygdale, and hippocampal EEG, accompanied by hippocampal and amygdala cell loss, as well as neurogenesis in the dentate gyrus (DG). In an effort to identify genes involved in molecular mechanisms underlying epileptic process, we used suppression-subtractive hybridization to construct normalized cDNA library enriched for transcripts expressed in the hippocampus of WARs. The most represented gene among the 133 clones sequenced was the ionotropic glutamate receptor subunit II (GluR2), a member of the ,-amino-3-hydroxy-5-methyl-4-isoxazoleopropionic acid (AMPA) receptor. Although semiquantitative RT-PCR analysis shows that the hippocampal levels of the GluR2 subunits do not differ between naïve WARs and their Wistar counterparts, we observed that the expression of the transcript encoding the splice-variant GluR2-flip is increased in the hippocampus of WARs submitted to both acute and kindled audiogenic seizures. Moreover, using in situ hybridization, we verified upregulation of GluR2-flip mainly in the CA1 region, among the hippocampal subfields of audiogenic kindled WARs. Our findings on differential upregulation of GluR2-flip isoform in the hippocampus of WARs displaying audiogenic seizures is original and agree with and extend previous immunohistochemical for GluR2 data obtained in the Chinese P77PMC audiogenic rat strain, reinforcing the association of limbic AMPA alterations with epileptic seizures. © 2009 Wiley-Liss, Inc. [source]


Synaptophysin protein and mRNA expression in the human hippocampal formation from birth to old age,

HIPPOCAMPUS, Issue 8 2006
Sharon L. Eastwood
Abstract In the human neocortex, progressive synaptogenesis in early postnatal life is followed by a decline in synaptic density, then stability from adolescence until middle age. No comparable data are available in the hippocampus. In this study, the integral synaptic vesicle protein synaptophysin, measured immunoautoradiographically, was used as an index of synaptic terminal abundance in the hippocampal formation of 37 subjects from 5 weeks to 86 yr old, divided into 4 age groups (10 infants, 15 adolescents/young adults, 6 adults, and 6 elderly). In all hippocampal subfields, synaptophysin was lowest in infancy, but did not differ significantly between the older age groups, except in dentate gyrus (DG) where the rise was delayed until adulthood. A similar developmental profile was found in the rat hippocampus. We also measured synaptophysin mRNA in the human subjects and found no age-related changes, except in parahippocampal gyrus wherein the mRNA declined from infancy to adolescence, and again in old age. The synaptophysin protein data demonstrate a significant presynaptic component to human postnatal hippocampal development. In so far as synaptophysin abundance reflects synaptic density, the findings support an increase in hippocampal and parahippocampal synapse formation during early childhood, but provide no evidence for adolescent synaptic pruning. The mRNA data indicate that the maturational increases in synaptophysin protein are either translational rather than transcriptional in origin, or else are secondary to mRNA increases in neurons, the cell bodies of which lie outside the hippocampal formation. Published 2006 Wiley-Liss, Inc. [source]


Alterations of hHrd1 expression are related to hyperphosphorylated tau in the hippocampus in Alzheimer's disease

JOURNAL OF NEUROSCIENCE RESEARCH, Issue 8 2006
Hai-Long Hou
Abstract The degradation of aberrantly phosphorylated tau in neurons plays an important role in the pathogenesis of Alzheimer's disease (AD). hHrd1 is a newly identified ubiquitin ligase involved in the endoplasmic reticulum (ER)-associated protein degradation. The expression and function of hHrd1 in AD brain remains elusive. In the present study, the expression of hHrd1 in AD hippocampus and the morphological relations between hHrd1 expression and pretangle formation were studied by using immunohistochemical single- and double-labeling methods. The results showed that hHrd1 was expressed in neurons and reactive astrocytes, especially in the CA2,CA4 hippocampal subfields. The ratio of hHrd1-positive neurons/astrocytes to total neurons/astrocytes was increased in the CA1 subfield in AD hippocampus compared with the age-matched controls (P < 0.05). Most Alz-50 labeled pretangles were colocalized with hHrd1, and the expression levels showed an inversed change, implied that hHrd1 might be associated with the degradation of hyperphosphorylated tau. © 2006 Wiley-Liss, Inc. [source]


Differential expression of glycans in the hippocampus of rats trained on an inhibitory learning paradigm

NEUROPATHOLOGY, Issue 6 2006
Alejandra Hidalgo
The glycan chains of glycoconjugates play important roles in cell,cell and cell,matrix interactions. In the CNS, previous studies on learning and memory suggest the importance of oligosaccharides attached to glycoconjugates in the modulation of synaptic connections. We studied the hippocampal glycan distribution of rats subject to an inhibitory avoidance task. The expression of glycans was examined by lectin-histochemistry using Vicia villosa lectin (VVL) for terminal ,/, N-acetylgalactosamine (,/, GalNAc); Galanthus nivalus lectin (GNL) for terminal mannose ,-1,3 (Man ,-1,3); Peanut agglutinin (PNA) for galactose ,-1,3N-acetylgalactosamine (Gal ,-1,3 GalNAc); Erythrina cristagalli lectin (ECL) for galactose ,-1,4 N-acetylglucosamine (Gal ,-1,4 GlcNAc); Sambucus nigra lectin (SNA) for sialic acid ,-2.6 galactose (SA ,-2,6 Gal); Maackia amurensis lectin II (MAL II) for sialic acid ,-2,3 (SA ,-2,3); Wheat germ agglutinin (WGA) for terminal N-acetylglucosamine with/without sialic acid (GlcNAc wo SA); succynilated WGA (sWGA) for terminal N-acetylglucosamine without sialic acid (terminal GlcNAc without SA); Griffonia simplicifolia lectin II (GSL II) for terminal ,/, N-acetylglucosamine (,/, GlcNAc terminal); and Lotus tetragonolobus lectin (LTL) ,,fucose. Two groups of 10 animals were examined: non-trained (Control) and Trained rats. ECL, sWGA and GSL II were negative for both groups in all the hippocampal subfields studied. For both groups, VVL was negative in CA4 and granular cells of the Dentate Gyrus (DG) and LTL was negative in the CA4 subfield. Expression of ,/, GalNAc, , -fucose and GlcNAc in other hippocampal subfields was positive, with no differences between groups. However, expression of Man ,-1,3 was significantly higher in the CA1, CA2, CA3, and CA4 subfields in the Trained group. On the other hand, expression of Gal ,-1,3 GalNAc was significantly low in CA4 and DG in the Trained group. In conclusion, the results here presented indicate that the exposure of rats to an associative behavioral paradigm related to declarative memory, involves some regulatory mechanism/s for the differential patterns of glycan expression. [source]