Home About us Contact | |||
Hippocampal Cell Proliferation (hippocampal + cell_proliferation)
Selected AbstractsDifferential Effects of Stress on Adult Hippocampal Cell Proliferation in Low and High Aggressive MiceJOURNAL OF NEUROENDOCRINOLOGY, Issue 7 2007A. H. Veenema Male wild house mice selected for a long (LAL) or a short (SAL) latency to attack a male intruder generally show opposing behavioural coping responses to environmental challenges. LAL mice, unlike SAL mice, adapt to novel challenges with a highly reactive hypothalamic-pituitary-adrenal axis and show an enhanced expression of markers for hippocampal plasticity. The present study aimed to test the hypothesis that these features of the more reactive LAL mice are reflected in parameters of hippocampal cell proliferation. The data show that basal cell proliferation in the subgranular zone (SGZ) of the dentate gyrus, assessed by the endogenous proliferation marker Ki-67, is lower in LAL than in SAL mice. Furthermore, application of bromodeoxyuridine (BrdU) over 3 days showed an almost two-fold lower cell proliferation rate in the SGZ in LAL versus SAL mice. Exposure to forced swimming resulted, 24 h later, in a significant reduction in BrdU + cell numbers in LAL mice, whereas cell proliferation was unaffected by this stressor in SAL mice. Plasma corticosterone and dentate gyrus glucocorticoid receptor levels were higher in LAL than in SAL mice. However, no differences between the SAL and LAL lines were found for hippocampal NMDA receptor binding. In conclusion, the data suggest a relationship between coping responses and hippocampal cell proliferation, in which corticosterone may be one of the determinants of line differences in cell proliferation responses to environmental challenges. [source] Age-dependent effect of prenatal stress on hippocampal cell proliferation in female ratsEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 3 2009Muriel Koehl Abstract Stressors occurring during pregnancy can alter the developmental trajectory of offspring and lead to, among other deleterious effects, cognitive deficits and hyperactivity of the hypothalamo-pituitary-adrenal axis. A recent feature of the prenatal stress (PS) model is its reported influence on structural plasticity in hippocampal formation, which sustains both cognitive functions and stress responsiveness. Indeed, we and others have previously reported that males exposed to stress in utero are characterized by a decrease in hippocampal cell proliferation, and consequently neurogenesis, from adolescence to senescence. Recent studies in females submitted to PS have reported conflicting results, ranging from no effect to a decrease in cell proliferation. We hypothesized that changes in cell proliferation in PS female rats are age dependent. To address this issue, we examined the impact of PS on hippocampal cell proliferation in juvenile, young, middle-aged and old females. As hypothesized, we found an age-dependent effect of PS in female rats as cell proliferation was significantly decreased only when animals reached senescence, a time when adrenal gland weight also increased. These data suggest that the deleterious effects of PS on hippocampal cell proliferation in females are either specific to senescence or masked during adulthood by protective factors. [source] Cognitive disorders and neurogenesis deficits in Huntington's disease mice are rescued by fluoxetineEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 8 2005Helen E. Grote Abstract Huntington's disease (HD) is a neurodegenerative disorder caused by an expanded CAG trinucleotide repeat encoding an extended polyglutamine tract in the huntingtin protein. Affected individuals display progressive motor, cognitive and psychiatric symptoms (including depression), leading to terminal decline. Given that transgenic HD mice have decreased hippocampal cell proliferation and that a deficit in neurogenesis has been postulated as an underlying cause of depression, we hypothesized that decreased hippocampal neurogenesis contributes to depressive symptoms and cognitive decline in HD. Fluoxetine, a serotonin-reuptake inhibitor commonly prescribed for the treatment of depression, is known to increase neurogenesis in the dentate gyrus of wild-type mouse hippocampus. Here we show that hippocampal-dependent cognitive and depressive-like behavioural symptoms occur in HD mice, and that the administration of fluoxetine produces a marked improvement in these deficits. Furthermore, fluoxetine was found to rescue deficits of neurogenesis and volume loss in the dentate gyrus of HD mice. [source] The antidepressant effects of running and escitalopram are associated with levels of hippocampal NPY and Y1 receptor but not cell proliferation in a rat model of depressionHIPPOCAMPUS, Issue 7 2010Astrid Bjørnebekk Abstract One hypothesis of depression is that it is caused by reduced neuronal plasticity including hippocampal neurogenesis. In this study, we compared the effects of three long-term antidepressant treatments: escitalopram, voluntary running, and their combination on hippocampal cell proliferation, NPY and the NPY-Y1 receptor mRNAs, targets assumed to be important for hippocampal plasticity and mood disorders. An animal model of depression, the Flinders Sensitive Line (FSL) rat, was used and female rats were chosen because the majority of the depressed population is females. We investigated if these treatments were correlated to immobility, swimming, and climbing behaviors, which are associated with an overall, serotonergic-like and noradrenergic-like antidepressant response, in the Porsolt swim test (PST). Interestingly, while escitalopram, running and their combination increased the number of hippocampal BrdU immunoreactive cells, the antidepressant-like effect was only detected in the running group and the group with access both to running wheel and escitalopram. Hippocampal NPY mRNA and the NPY-Y1 receptor mRNA were elevated by running and the combined treatment. Moreover, correlations were detected between NPY mRNA levels and climbing and cell proliferation and NPY-Y1 receptor mRNA levels and swimming. Our results suggest that increased cell proliferation is not necessarily associated with an antidepressant effect. However, treatments that were associated with an antidepressant-like effect did regulate hippocampal levels of mRNAs encoding NPY and/or the NPY-Y1 receptor and support the notion that NPY can stimulate cell proliferation and induce an antidepressant-like response. © 2009 Wiley-Liss, Inc. [source] Dietary restriction inhibits spatial learning ability and hippocampal cell proliferation in rats,JAPANESE PSYCHOLOGICAL RESEARCH, Issue 1 2008SHUICHI YANAI Abstract: We investigated the effect of dietary restriction on spatial learning ability and hippocampal cell proliferation in adult rats using two spatial learning tasks and immunohistochemical staining with 5-bromo-2,-deoxyuridine (BrdU). Sixteen rats were divided into restricted or ad lib feeding groups at 70 days of age, and were trained in the delayed-matching-to-place (DMTP) task (a working memory task) from 93 days of age, and then the Morris water maze task (a reference memory task). Dietary restriction had no effect on the DMTP task with 30 s delay and on the water maze task. However, in the DMTP task with 30 min delay, restricted rats performed significantly more poorly than ad lib rats. Quantitative analysis of hippocampal cell proliferation revealed that the density of newborn cells in restricted rats was significantly lower than that in ad lib rats. These results suggest that a loss of proliferating capacity in the hippocampus may be a candidate for an anatomical and biological basis for the cognitive decline caused by dietary restriction. [source] Effect of aging on neurogenesis in the canine brainAGING CELL, Issue 3 2008Anton Pekcec Summary An age-dependent decline in hippocampal neurogenesis has been reported in laboratory rodents. Environmental enrichment proved to be a strong trigger of neurogenesis in young and aged laboratory rodents, which are generally kept in facilities with a paucity of environmental stimuli. These data raise the question whether an age-dependent decline in hippocampal cell proliferation and neurogenesis can also be observed in individuals exposed to diversified and varying surroundings. Therefore, we determined rates of canine hippocampal neurogenesis using post-mortem tissue from 37 nonlaboratory dogs that were exposed to a variety of environmental conditions throughout their life. Expression of the neuronal progenitor cell marker doublecortin clearly correlated with age. The analysis of doublecortin-labeled cells in dogs aged > 133 months indicated a 96% drop in the aged canine brain as compared to young adults. Expression of the proliferation marker Ki-67 in the subgranular zone decreased until dogs were aged 85,132 months. In the aging canine brain amyloid-beta peptide deposits have been described that might resemble an early pathophysiological change in the course of human Alzheimer's disease. Comparison of Ki-67 and doublecortin expression in canine brain tissue with or without diffuse plaques revealed no differences. The data indicate that occurrence of diffuse plaques in the aging brain is not sufficient to trigger enhanced proliferation or enhanced neurogenesis such as described in human Alzheimer's disease. In addition, this study gives first proof that an age-dependent decline also dominates hippocampal neurogenesis rates in individuals living in diversified environments. [source] Differential Effects of Stress on Adult Hippocampal Cell Proliferation in Low and High Aggressive MiceJOURNAL OF NEUROENDOCRINOLOGY, Issue 7 2007A. H. Veenema Male wild house mice selected for a long (LAL) or a short (SAL) latency to attack a male intruder generally show opposing behavioural coping responses to environmental challenges. LAL mice, unlike SAL mice, adapt to novel challenges with a highly reactive hypothalamic-pituitary-adrenal axis and show an enhanced expression of markers for hippocampal plasticity. The present study aimed to test the hypothesis that these features of the more reactive LAL mice are reflected in parameters of hippocampal cell proliferation. The data show that basal cell proliferation in the subgranular zone (SGZ) of the dentate gyrus, assessed by the endogenous proliferation marker Ki-67, is lower in LAL than in SAL mice. Furthermore, application of bromodeoxyuridine (BrdU) over 3 days showed an almost two-fold lower cell proliferation rate in the SGZ in LAL versus SAL mice. Exposure to forced swimming resulted, 24 h later, in a significant reduction in BrdU + cell numbers in LAL mice, whereas cell proliferation was unaffected by this stressor in SAL mice. Plasma corticosterone and dentate gyrus glucocorticoid receptor levels were higher in LAL than in SAL mice. However, no differences between the SAL and LAL lines were found for hippocampal NMDA receptor binding. In conclusion, the data suggest a relationship between coping responses and hippocampal cell proliferation, in which corticosterone may be one of the determinants of line differences in cell proliferation responses to environmental challenges. [source] |