Home About us Contact | |||
Helper
Kinds of Helper Terms modified by Helper Selected AbstractsEMOTION HELPERS: THE ROLE OF HIGH POSITIVE AFFECTIVITY AND HIGH SELF-MONITORING MANAGERSPERSONNEL PSYCHOLOGY, Issue 2 2007GINKA TOEGEL Who provides help to employees suffering anxiety and emotional pain in organizations? From an interactionist perspective, we anticipated that increasing levels of managerial responsibility would unlock discretionary helping behavior related to differences in self-monitoring and positive affectivity. Results from a study of 94 members of a recruitment firm confirmed that those active in providing emotional help to others in the workplace tended to possess a combination of managerial responsibility and a high self-monitoring or high positive affectivity disposition. By contrast, when members were low in positive affect or self-monitoring they provided less emotional help to others, irrespective of the level of managerial responsibility. These interaction results remained significant after taking into account centrality in friendship and workflow networks, as well as significant effects of gender. [source] ,Mother's Little Helper': The Crisis of Psychoanalysis and the Miltown ResolutionGENDER & HISTORY, Issue 2 2003Jonathan M. Metzl This paper examines the discourse surrounding the release in 1955 of Miltown, America's first psychotropic wonder drug. According to many histories of psychiatry, Miltown heralded the arrival of a new paradigm in treating psychiatric patients , as a drug that operated on a neurochemical level, it was argued to replace a psychoanalytic approach with its focus on the mother-child relation. Between 1955 and 1960, articles about pharmaceutical miracle cures for mental illnesses filled mass-circulation news magazines and top fashion magazines. Through analysis of these representations, this article shows how the newly discovered pills came to be associated with existing concerns about conditions problematically referred to as ,maternal conditions,' ranging from a woman's frigidity, to a bride's uncertainty, to a wife's infidelity. Using these representations, the paper demonstrates how in American popular culture, psychoanalytic notions of motherhood prevalent in the 1950s shaped early understandings and uses of psychotropic drugs. [source] Healers, Helpers & Hospitals.ANZ JOURNAL OF SURGERY, Issue 7-8 2010A History of Military Medicine in the Anglo, Boer War No abstract is available for this article. [source] Allergic contact dermatitis: the cellular effectorsCONTACT DERMATITIS, Issue 1 2002Ian Kimber Contact hypersensitivity reactions are mediated by lymphocytic effector cells. Until recently it was believed that the most important of these were CD4+ T lymphocytes. However, there is growing evidence that in many instances the predominant effector cell may be a CD8+ T lymphocyte, with in some instances CD4+ cells performing a counter-regulatory function. Here we review the roles of CD4+ T helper (Th) cells and CD8+ T cytotoxic (Tc) cells, and their main functional subpopulations (respectively, Th1 and Th2 cells and Tc1 and Tc2 cells) in the elicitation of contact hypersensitivity reactions and consider the implications of effector cell selectivity for the biology of allergic contact dermatitis. [source] In 12-step groups, helping helps the helperADDICTION, Issue 8 2004Sarah E. Zemore ABSTRACT Aims The helper therapy principle suggests that, within mutual-help groups, those who help others help themselves. The current study examines whether clients in treatment for alcohol and drug problems benefit from helping others, and how helping relates to 12-step involvement. Design Longitudinal treatment outcome. Participants An ethnically diverse community sample of 279 alcohol- and/or drug-dependent individuals (162 males, 117 females) was recruited through advertisement and treatment referral from Northern California Bay Area communities. Participants were treated at one of four day-treatment programs. Measurements A helping checklist measured the amount of time participants spent, during treatment, helping others by sharing experiences, explaining how to get help and giving advice on housing and employment. Measures of 12-step involvement and substance use outcomes were administered at baseline and a 6 month follow-up. Findings Helping and 12-step involvement emerged as important and related predictors of treatment outcomes. In the general sample, total abstinence at follow-up was strongly and positively predicted by 12-step involvement at follow-up, but not by helping during treatment; still, helping positively predicted subsequent 12-step involvement. Among individuals still drinking at follow-up, helping during treatment predicted a lower probability of binge drinking, whereas effects for 12-step involvement proved inconsistent. Conclusions Findings support the helper therapy principle and clarify the process of 12-step affiliation. [source] Age-matched lymphocyte subpopulation reference values in childhood and adolescence: application of exponential regression analysisEUROPEAN JOURNAL OF HAEMATOLOGY, Issue 6 2008Sabine Huenecke Abstract Background:, Normal values of lymphocyte subpopulations for healthy children and adults have been published in defined age groups exclusively, which results in difficult data interpretation for patients close to the limit of contiguous age group ranges. In addition, normal values for a number of lymphocyte subpopulations have not been established to date. Objective:, The aim of this study was to develop a model which provides continuous age-dependent reference values. This model was applied for lymphocyte subpopulations such as naïve and memory T cells as well as their activation profile with diagnostic relevance in children and adults. Study design:, A total of 100 blood samples, obtained from 80 healthy children and 20 adults were analysed by means of four colour-flow cytometry. Continuous age-dependent reference values were computed based on the residual values in an exponential regression model. Results:, We calculated a continuous age-related regression model for both, absolute cell counts and percentages of CD3+CD4+ T helper (TH) cells, CD3+CD8+ cytotoxic T cells, CD56+CD3, natural killer (NK) cells, CD56+CD3+ T cells, CD3+CD4+CD45RA+ naïve TH cells, CD3+CD4+CD45RO+ memory TH cells, CD3+CD8+CD45RA+CD28+ naïve cytotoxic T cells, CD3+CD8+CD45RO+ memory cytotoxic T cells, CD3+CD8+CD69+ early activated cytotoxic T cells and CD3+CD8+HLA-DR+ late activated cytotoxic T cells, respectively, to obtain reference values. Conclusion:, Based on an exponential regression model, the obtained reference values reflect the continuous maturation of lymphocyte subsets during childhood. [source] Notch1 expression on T,cells is not required for CD4+ T,helper differentiationEUROPEAN JOURNAL OF IMMUNOLOGY, Issue 6 2004Fabienne Tacchini-Cottier Abstract Notch1 proteins are involved in binary cell fate decisions. To determine the role of Notch1 in the differentiation of CD4+ Th1 versus Th2 cells, we have compared T,helper polarization in vitro in naive CD4+ T,cells isolated from mice in which the N1 gene is specifically inactivated in all mature T,cells. Following activation, Notch1-deficient CD4+ T,cells transcribed and secreted IFN-, under Th1 conditions and IL-4 under Th2 conditions at levels similar to that of control CD4+ T,cells. These results show that Notch1 is dispensable for the development of Th1 and Th2 phenotypes in vitro. The requirement for Notch1 in Th1 differentiation in vivo was analyzed following inoculation of Leishmania major in mice with a T,cell-specific inactivation of the Notch1 gene. Following infection, these mice controlled parasite growth at the site of infection and healed their lesions. The mice developed a protective Th1 immune response characterized by high levels of IFN-, mRNA and protein and low levels of IL-4 mRNA with no IL-4 protein in their lymph node cells. Taken together, these results indicate that Notch1 is not critically involved in CD4+ T,helper,1 differentiation and in resolution of lesions following infection with L.,major. [source] Osteopontin and the skin: multiple emerging roles in cutaneous biology and pathologyEXPERIMENTAL DERMATOLOGY, Issue 9 2009Franziska Buback Abstract:, Osteopontin (OPN) is a glycoprotein expressed by various tissues and cells. The existence of variant forms of OPN as a secreted (sOPN) and intracellular (iOPN) protein and its modification through post-translational modification and proteolytic cleavage explain its broad range of functions. There is increasing knowledge which receptors OPN isoforms can bind to and which signaling pathways are activated to mediate different OPN functions. sOPN interacts with integrins and CD44, mediates cell adhesion, migration and tumor invasion, and has T helper 1 (Th1) cytokine functions and anti-apoptotic effects. iOPN has been described to regulate macrophage migration and interferon-, secretion in plasmacytoid dendritic cells. Both sOPN and iOPN, through complex functions for different dendritic cell subsets, participate in the regulation of Th cell lineages, among them Th17 cells. For skin disease, OPN from immune cells and tumor cells is of pathophysiological relevance. OPN is secreted in autoimmune diseases such as lupus erythematosus, and influences inflammation of immediate and delayed type allergies and granuloma formation. We describe that OPN is overexpressed in psoriasis and propose a model to study OPN function in psoriatic inflammation. Through cytokine functions, OPN supports immune responses against Mycobacteria and viruses such as herpes simplex virus. OPN is also implicated in skin tumor progression. Overexpression of OPN influences invasion and metastasis of melanoma and squamous cell carcinoma cells, and OPN expression in melanoma is a possible prognostic marker. As OPN protein preparations and anti-OPN antibodies may be available in the near future, in-depth knowledge of OPN functions may open new therapeutic approaches for skin diseases. [source] The 21st century renaissance of the basophil?EXPERIMENTAL DERMATOLOGY, Issue 11 2006Current insights into its role in allergic responses, innate immunity Abstract:, Basophils and mast cells express all the three subchains of the high-affinity immunoglobulin E (IgE) receptor Fc,RI and contain preformed histamine in the cytoplasmic granules. However, it is increasingly clear that these cells play distinct roles in allergic inflammatory disease. Despite their presence throughout much of the animal kingdom, the physiological function of basophils remains obscure. As rodent mast cells are more numerous than basophils, and generate an assortment of inflammatory cytokines, basophils have often been regarded as minor players in allergic inflammation. In humans, however, basophils are the prime early producers of interleukin (IL)-4 and IL-13, T helper (Th)2-type cytokines crucial for initiating and maintaining allergic responses. Basophils also express CD40 ligand which, in combination with IL-4 and IL-13, facilitates IgE class switching in B cells. They are the main cellular source for early IL-4 production, which is vital for the development of Th2 responses. The localization of basophils in various tissues affected by allergic inflammation has now been clearly demonstrated by using specific staining techniques and the new research is shedding light on their selective recruitment to the tissues. Finally, recent studies have shown that basophil activation is not restricted to antigen-specific IgE crosslinking, but can be caused in non-sensitized individuals by a growing list of parasitic antigens, lectins and viral superantigens, binding to non-specific IgE antibodies. This, together with novel IgE-independent routes of activation, imparts important new insights into the potential role of basophils in both adaptive and innate immunity. [source] Immune response modifiers , mode of actionEXPERIMENTAL DERMATOLOGY, Issue 5 2006Meinhard Schiller Abstract:, The innate immune system governs the interconnecting pathways of microbial recognition, inflammation, microbial clearance, and cell death. A family of evolutionarily conserved receptors, known as the Toll-like receptors (TLRs), is crucial in early host defense against invading pathogens. Upon TLR stimulation, nuclear factor-,B activation and the interferon (IFN)-regulatory factor 3 pathway initiate production of pro-inflammatory cytokines, such as interleukin-1 and tumor necrosis factor-,, and production of type I IFNs (IFN-, and IFN-,), respectively. The innate immunity thereby offers diverse targets for highly selective therapeutics, such as small molecular synthetic compounds that modify innate immune responses. The notion that activation of the innate immune system is a prerequisite for the induction of acquired immunity raised interest in these immune response modifiers as potential therapeutics for viral infections and various tumors. A scenario of dermal events following skin cancer treatment with imiquimod presumably comprises (i) an initial low amount of pro-inflammatory cytokine secretion by macrophages and dermal dendritic cells (DCs), thereby (ii) attracting an increasing number type I IFN-producing plasmacytoid DCs (pDCs) from the blood; (iii) Langerhans cells migrate into draining lymph nodes, leading to an increased presentation of tumor antigen in the draining lymph node, and (iv) consequently an increased generation of tumor-specific T cells and finally (v) an accumulation of tumoricidal effector cells in the treated skin area. The induction of predominately T helper (Th)1-type cytokine profiles by TLR agonists such as imiquimod might have further benefits by shifting the dominant Th2-type response in atopic diseases such as asthma and atopic dermatitis to a more potent Th1 response. [source] Hepatic recruitment of the inflammatory Gr1+ monocyte subset upon liver injury promotes hepatic fibrosis,HEPATOLOGY, Issue 1 2009Karlin Raja Karlmark In addition to liver-resident Kupffer cells, infiltrating immune cells have recently been linked to the development of liver fibrosis. Blood monocytes are circulating precursors of tissue macrophages and can be divided into two functionally distinct subpopulations in mice: Gr1hi (Ly6Chi) and Gr1lo (Ly6Clo) monocytes. The role of these monocyte subsets in hepatic fibrosis and the mechanisms of their differential recruitment into the injured liver are unknown. We therefore characterized subpopulations of infiltrating monocytes in acute and chronic carbon tetrachloride (CCl4)-induced liver injury in mice using flow cytometry and immunohistochemistry. Inflammatory Gr1hi but not Gr1lo monocytes are massively recruited into the liver upon toxic injury constituting an up to 10-fold increase in CD11b+F4/80+ intrahepatic macrophages. Comparing wild-type with C-C chemokine receptor (CCR2)-deficient and CCR2/CCR6,deficient mice revealed that CCR2 critically controls intrahepatic Gr1hi monocyte accumulation by mediating their egress from bone marrow. During chronic liver damage, intrahepatic CD11b+F4/80+Gr1+ monocyte-derived cells differentiate preferentially into inducible nitric oxide synthase,producing macrophages exerting proinflammatory and profibrogenic actions, such as promoting hepatic stellate cell (HSC) activation, T helper 1,T cell differentiation and transforming growth factor , (TGF-,) release. Impaired monocyte subset recruitment in Ccr2,/, and Ccr2,/,Ccr6,/, mice results in reduced HSC activation and diminished liver fibrosis. Moreover, adoptively transferred Gr1hi monocytes traffic into the injured liver and promote fibrosis progression in wild-type and Ccr2,/,Ccr6,/, mice, which are otherwise protected from hepatic fibrosis. Intrahepatic CD11b+F4/80+Gr1+ monocyte-derived macrophages purified from CCl4 -treated animals, but not naïve bone marrow monocytes or control lymphocytes, directly activate HSCs in a TGF-,,dependent manner in vitro. Conclusion: Inflammatory Gr1+ monocytes, recruited into the injured liver via CCR2-dependent bone marrow egress, promote the progression of liver fibrosis. Thus, they may represent an interesting novel target for antifibrotic strategies. (HEPATOLOGY 2009;50:261,274.) [source] Enhanced T cell transmigration across the murine liver sinusoidal endothelium is mediated by transcytosis and surface presentation of chemokines,HEPATOLOGY, Issue 4 2008Arnhild Schrage Transmigration through the liver endothelium is a prerequisite for the homeostatic balance of intrahepatic T cells and a key regulator of inflammatory processes within the liver. Extravasation into the liver parenchyma is regulated by the distinct expression patterns of adhesion molecules and chemokines and their receptors on the lymphocyte and endothelial cell surface. In the present study, we investigated whether liver sinusoidal endothelial cells (LSEC) inhibit or support the chemokine-driven transmigration and differentially influence the transmigration of pro-inflammatory or anti-inflammatory CD4+ T cells, indicating a mechanism of hepatic immunoregulation. Finally, the results shed light on the molecular mechanisms by which LSEC modulate chemokine-dependent transmigration. LSEC significantly enhanced the chemotactic effect of CXC-motif chemokine ligand 12 (CXCL12) and CXCL9, but not of CXCL16 or CCL20, on naive and memory CD4+ T cells of a T helper 1, T helper 2, or interleukin-10,producing phenotype. In contrast, brain and lymphatic endothelioma cells and ex vivo isolated lung endothelia inhibited chemokine-driven transmigration. As for the molecular mechanisms, chemokine-induced activation of LSEC was excluded by blockage of Gi -protein,coupled signaling and the use of knockout mice. After preincubation of CXCL12 to the basal side, LSEC took up CXCL12 and enhanced transmigration as efficiently as in the presence of the soluble chemokine. Blockage of transcytosis in LSEC significantly inhibited this effect, and this suggested that chemokines taken up from the basolateral side and presented on the luminal side of endothelial cells trigger T cell transmigration. Conclusion: Our findings demonstrate a unique capacity of LSEC to present chemokines to circulating lymphocytes and highlight the importance of endothelial cells for the in vivo effects of chemokines. Chemokine presentation by LSEC could provide a future therapeutic target for inhibiting lymphocyte immigration and suppressing hepatic inflammation. (HEPATOLOGY 2008.) [source] Hepatitis C virus,infected hepatocytes extrinsically modulate dendritic cell maturation to activate T cells and natural killer cells,HEPATOLOGY, Issue 1 2008Takashi Ebihara Dendritic cell maturation critically modulates antiviral immune responses, and facilitates viral clearance. Hepatitis C virus (HCV) is characterized by its high predisposition to persistent infection. Here, we examined the immune response of human monocyte-derived dendritic cells (MoDCs) to the JFH1 strain of HCV, which can efficiently replicate in cell culture. However, neither HCV RNA replication nor antigen production was detected in MoDCs inoculated with JFH1. None of the indicators of HCV interacting with MoDCs we evaluated were affected, including expression of maturation markers (CD80, 83, 86), cytokines (interleukin-6 and interferon-beta), the mixed lymphocyte reaction, and natural killer (NK) cell cytotoxicity. Strikingly, MoDCs matured by phagocytosing extrinsically-infected vesicles containing HCV-derived double-stranded RNA (dsRNA). When MoDCs were cocultured with HCV-infected apoptotic Huh7.5.1 hepatic cells, there was increased CD86 expression and interleukin-6 and interferon-beta production in MoDCs, which were characterized by the potential to activate NK cells and induce CD4+ T cells into the T helper 1 type. Lipid raft-dependent phagocytosis of HCV-infected apoptotic vesicles containing dsRNA was indispensable to MoDC maturation. Colocalization of dsRNA with Toll-like receptor 3 (TLR3) in phagosomes suggested the importance of TLR3 signaling in the MoDC response against HCV. Conclusion: The JFH1 strain does not directly stimulate MoDCs to activate T cells and NK cells, but phagocytosing HCV-infected apoptotic cells and their interaction with the TLR3 pathway in MoDCs plays a critical role in MoDC maturation and reciprocal activation of T and NK cells. (HEPATOLOGY 2008.) [source] The liver as a crucial organ in the first line of host defense: the roles of Kupffer cells, natural killer (NK) cells and NK1.1 Ag+ T cells in T helper 1 immune responsesIMMUNOLOGICAL REVIEWS, Issue 1 2000Shuhji Seki Summary: The liver remains a hematopoietic organ after birth and can produce all leukocyte lineages from resident hematopoietic stem cells. Hepatocytes produce acute phase proteins and complement in bacterial infections. Liver Kupffer cells are activated by various bacterial stimuli, including bacterial lipopolysaccharide (LPS) and bacterial superantigens, and produce interleukin (IL)-12. IL-12 and other monokines (IL-18 etc.) produced by Kupffer cells activate liver natural killer (NK) cells and NK1.1 Ag+ T cells to produce interferon-g and thereby acquire cytotoxicity against tumors and microbe-infected cells. These liver leukocytes and the T helper 1 immune responses induced by them thus play a crucial role in the first line of defense against bacterial infections and hematogenous tumor metastases. However, if this defense system is inadequately activated, shock associated with multiple organ failure takes place. Activated liver NK1.1 Ag+ T cells and NK cells also cause hepatocyte injury. NK1.1 Ag+ T cells and another T-cell subset with an intermediate T-cell receptor, CD122+CD8+ T cells, can develop independently of thymic epithelial cells. Liver NK cells and NK1.1 Ag+ T cells physiologically develop in situ from their precursors, presumably due to bacterial antigens brought from the intestine via the portal vein. NK cells activated by bacterial superantigens or LPS are also probably involved in the vascular endothelial injury in Kawasaki disease. [source] Suppression of allergic airway inflammation in a mouse model by Der p2 recombined BCGIMMUNOLOGY, Issue 1pt2 2009Hai-Feng Ou-Yang Summary Allergic asthma is a chronic inflammatory disease mediated by T helper (Th)2 cell immune responses. Currently, immunotherapies based on both immune deviation and immune suppression, including the development of recombinant mycobacteria as immunoregulatory vaccines, are attractive treatment strategies for asthma. In our previous studies, we created a genetically recombinant form of bacille Calmette,Guerin (rBCG) that expressed Der p2 of house dust mites and established that it induced a shift from a Th2 response to a Th1 response in naive mice. However, it is unclear whether rBCG could suppress allergic airway inflammation in a mouse model. In this article we report that rBCG dramatically inhibited airway inflammation, eosinophilia, mucus production and mast cell degranulation in allergic mice. Analysis of interferon-, (IFN-,) and interleukin-4 (IL-4) levels in bronchoalveolar lavage fluid (BALF) and lung tissue revealed that the suppression was associated with a shift from a Th2 response to a Th1 response. At the same time, rBCG induced a CD4+ CD25+ Foxp3+ T-cell subtype that could suppress the proliferation of Th2 effector cells in vitro in an antigen-specific manner. Moreover, suppression of CD4+ CD25+ T cells could be adoptively transferred. Thus, our results demonstrate that rBCG induces both generic and specific immune responses. The generic immune response is associated with a shift from a Th2 to a Th1 cytokine response, whereas the specific immune response against Der p2 appears to be related to the expansion of transforming growth factor-, (TGF-,)-producing CD4+ CD25+ Foxp3+ regulatory T cells. rBCG can suppress asthmatic airway inflammation through both immune deviation and immune suppression and may be a feasible, efficient immunotherapy for asthma. [source] Roles of proinflammatory cytokines and the Fas/Fas ligand interaction in the pathogenesis of inflammatory myopathiesIMMUNOLOGY, Issue 1pt2 2009Masahiro Kondo Summary Within the lesions of inflammatory myopathies, muscle fibres and invading mononuclear cells express Fas and Fas ligand (FasL), respectively. However, the roles of the Fas/FasL interaction in the pathogenesis of inflammatory myopathies are not fully understood. In the present study, we investigated the roles of proinflammatory cytokines and the Fas/FasL system in the pathogenesis of inflammatory myopathies. In vitro culturing of muscle cells with the proinflammatory cytokines interferon-,, tumour necrosis factor-,, and interleukin (IL)-1, synergistically increased Fas expression, susceptibility to Fas-mediated apoptosis, and the expression of cytoplasmic caspases 8 and 3. In addition, culturing of muscle cells with activated CD4+ T cells induced muscle cell apoptosis, which was partially inhibited by anti-FasL antibody. We also tested the possibility that T helper (Th) 17, which is an IL-17-producing helper T-cell subset that plays crucial roles in autoimmune and inflammatory responses, participates in the pathogenesis of inflammatory myopathies. Interestingly, in vitro culturing of dendritic cells with anti-Fas immunoglobulin M (IgM) or activated CD4+ T cells induced the expression of mRNA for IL-23p19, but not for IL-12p35, in addition to proinflammatory cytokines. Furthermore, IL-23p19 and IL-17 mRNAs were detected in the majority of biopsy samples from patients with inflammatory myopathies. Taken together, these results suggest that proinflammatory cytokines enhance Fas-mediated apoptosis of muscle cells, and that the Fas/FasL interaction between invading dendritic cells and CD4+ T cells induces local production of IL-23 and proinflammatory cytokines, which can promote the proliferation of Th17 cells and enhance Fas-mediated apoptosis of muscle cells, respectively. [source] Epigenetics and T helper 1 differentiationIMMUNOLOGY, Issue 3 2009Thomas M. Aune Summary Naïve T helper cells differentiate into two subsets, T helper 1 and 2, which either transcribe the Ifng gene and silence the Il4 gene or transcribe the Il4 gene and silence the Ifng gene, respectively. This process is an essential feature of the adaptive immune response to a pathogen and the development of long-lasting immunity. The ,histone code' hypothesis proposes that formation of stable epigenetic histone marks at a gene locus that activate or repress transcription is essential for cell fate determinations, such as T helper 1/T helper 2 cell fate decisions. Activation and silencing of the Ifng gene are achieved through the creation of stable epigenetic histone marks spanning a region of genomic DNA over 20 times greater than the gene itself. Key transcription factors that drive the T helper 1 lineage decision, signal transducer and activator 4 (STAT4) and T-box expressed in T cells (T-bet), play direct roles in the formation of activating histone marks at the Ifng locus. Conversely, STAT6 and GATA binding protein 3, transcription factors essential for the T helper 2 cell lineage decision, establish repressive histone marks at the Ifng locus. Functional studies demonstrate that multiple genomic elements up to 50 kilobases from Ifng play critical roles in its proper transcriptional regulation. Studies of three-dimensional chromatin conformation indicate that these distal regulatory elements may loop towards Ifng to regulate its transcription. We speculate that these complex mechanisms have evolved to tightly control levels of interferon-, production, given that too little or too much production would be very deleterious to the host. [source] Common themes emerge in the transcriptional control of T helper and developmental cell fate decisions regulated by the T-box, GATA and ROR familiesIMMUNOLOGY, Issue 3 2009Sara A. Miller Summary Cellular differentiation requires the precise action of lineage-determining transcription factors. In the immune system, CD4+ T helper cells differentiate into at least three distinct effector lineages, T helper type 1 (Th1), Th2 and Th17, with the fate of the cell at least in part determined by the transcription factors T-box expressed in T cells (T-bet), GATA-3 and retinoid-related orphan receptor ,t (ROR,t), respectively. Importantly, these transcription factors are members of larger families that are required for numerous developmental transitions from early embryogenesis into adulthood. Mutations in members of these transcription factor families are associated with a number of human genetic diseases due to a failure in completing lineage-specification events when the factor is dysregulated. Mechanistically, there are both common and distinct functional activities that are utilized by T-box, GATA and ROR family members to globally alter the cellular gene expression profiles at specific cell fate decision checkpoints. Therefore, understanding the molecular events that contribute to the ability of T-bet, GATA-3 and ROR,t to define T helper cell lineages can provide valuable information relevant to the establishment of other developmental systems and, conversely, information from diverse developmental systems may provide unexpected insights into the molecular mechanisms utilized in T helper cell differentiation. [source] Lymphoid enhancer factor interacts with GATA-3 and controls its function in T helper type 2 cellsIMMUNOLOGY, Issue 3 2008Mohammad B. Hossain Summary GATA-3 is the master transcription factor for T helper 2 (Th2) cell differentiation and is critical for the expression of Th2 cytokines. Little is known, however, about the nature of the functional molecular complexes of GATA-3. We identified a high-mobility group (HMG)-box type transcription factor, lymphoid enhancer factor 1 (LEF-1), in the GATA-3 complex present in Th2 cells using a Flag-calmodulin-binding peptide (CBP)-tag based proteomics method. The interaction between GATA-3 and LEF-1 was confirmed by co-immunoprecipitation experiments using LEF-1-introduced T-cell lineage TG40 cells. The HMG-box domain of LEF-1 and two zinc finger domains of GATA-3 were found to be important for the physical association. The introduction of LEF-1 into developing Th2 cells resulted in the suppression of Th2 cytokine production. The suppression was significantly lower in the cells into which a HMG-box-deleted LEF-1 mutant was introduced. Moreover, LEF-1 inhibited the binding activity of GATA-3 to the interleukin (IL)-5 promoter. These results suggest that LEF-1 is involved in the GATA-3 complex, while also regulating the GATA-3 function, such as the induction of Th2 cytokine expression via the inhibition of the DNA-binding activity of GATA-3. [source] Anti tumour necrosis-, therapy increases the number of FOXP3+ regulatory T cells in children affected by Crohn's diseaseIMMUNOLOGY, Issue 2 2008Ida Ricciardelli Summary Crohn's disease (CD) is a chronic inflammatory disease of the gastrointestinal tract. Its pathogenesis is not completely understood, though the prevailing model is that the intestinal flora drives a strong intestinal T helper 1 (Th1)/Th17 type immune response and inflammation in the genetically susceptible host. This leads to overly aggressive T-cell responses to normal bacteria causing tissue damage. Intestinal homeostasis and maintenance of tolerance to harmless antigens in the intestine has been shown to be maintained by CD4+ CD25+ T regulatory cells (Treg) in animal models of inflammatory bowel diseases. Here we investigated whether Infliximab, a chimeric monoclonal antibody directed against tumour necrosis factor (TNF)-, shown to be highly effective in the treatment of CD, has any effect on mucosal CD4+ CD25+ (FOXP3+) Tregs. Colonic mucosal biopsies from children with active Crohn's disease treated in vivo with Infliximab and controls were analysed to determine FOXP3 expression by immunofluorescence and reverse transcription,polymerase chain reaction. We observed that FOXP3+ T cells were significantly reduced in mucosa of CD patients with active disease compared with controls and restored to normal following Infliximab treatment. The frequency of FOXP3+ cells and mRNA expression was significantly increased in CD mucosa from patients treated in vivo with Infliximab compared with CD patients treated with conventional therapies. In conclusion, we show that Infliximab treatment does not solely neutralize soluble TNF-,, but also affects activation and possibly expansion of mucosal regulatory T cells. We suggest that anti TNF-, immunotherapy can also restore mucosal homeostasis in Crohn's disease. [source] Control of IL-4 expression in T helper 1 and 2 cellsIMMUNOLOGY, Issue 4 2008Jane Gilmour Summary The mechanism of differentiation of naïve T cells to a variety of effector lineages, but particularly to T helper type 1 (Th1) and Th2 cells, has been the subject of intense scrutiny over the past two decades. Studies have revealed that the expression of cytokines, receptors, signalling molecules, transcription factors, DNA methylating enzymes and histone-modifying enzymes is altered during the process and has been shown to play a co-ordinated role to facilitate expression of the cytokines interleukin-4 (IL-4), IL-5 and IL-13 in Th2 cells, or interferon-, in Th1 cells. Regulation of IL-4 expression has been of particular interest for two main reasons: first because IL-4 acts as a growth factor for Th2 cells, and second because of its role in the induction of immunoglobulin class switching to immunoglobulin E, which plays a critical role in mediating allergic responses. Study of the pathways that promote this tissue-restricted expression of IL-4 may highlight potential areas for therapeutic intervention. [source] Natural killer T-cell characterization through gene expression profiling: an account of versatility bridging T helper type 1 (Th1), Th2 and Th17 immune responsesIMMUNOLOGY, Issue 1 2008Marcus Niemeyer Summary Natural killer T (NKT) cells constitute a distinct lymphocyte lineage at the interface between innate and adaptive immunity, yet their role in the immune response remains elusive. Whilst NKT cells share features with other conventional T lymphocytes, they are unique in their rapid, concomitant production of T helper type 1 (Th1) and Th2 cytokines upon T-cell receptor (TCR) ligation. In order to characterize the gene expression of NKT cells, we performed comparative microarray analyses of murine resting NKT cells, natural killer (NK) cells and naïve conventional CD4+ T helper (Th) and regulatory T cells (Treg). We then compared the gene expression profiles of resting and alpha-galactosylceramide (,GalCer)-activated NKT cells to elucidate the gene expression signature upon activation. We describe here profound differences in gene expression among the various cell types and the identification of a unique NKT cell gene expression profile. In addition to known NKT cell-specific markers, many genes were expressed in NKT cells that had not been attributed to this population before. NKT cells share features not only with Th1 and Th2 cells but also with Th17 cells. Our data provide new insights into the functional competence of NKT cells which will facilitate a better understanding of their versatile role during immune responses. [source] Interferon-,-dependent inhibition of late allergic airway responses and eosinophilia by CD8+,, T cellsIMMUNOLOGY, Issue 2 2007Susumu Isogai Summary We have previously shown that CD8+,, T cells decrease late allergic airway responses, airway eosinophilia, T helper 2 cytokine expression and increase interferon-, (IFN-,) expression. We hypothesized that the effects of CD8+,, T cells were IFN-, mediated. Brown Norway rats were sensitized to ovalbumin on day 1. Cervical lymph node CD8+,, T cells from sensitized animals were treated with antisense oligodeoxynucleotide (5 µmol/l) to inhibit IFN-, synthesis or control oligodeoxynucleotide and 3·5 × 104 CD8+,, T cells were injected intraperitoneally into sensitized recipients on day 13. Rats were challenged with aerosolized ovalbumin on day 15 and lung resistance was monitored over an 8 hr period, after which bronchoalveolar lavage was performed. Control oligodeoxynucleotide treated ,, T cells decreased late airway responses and eosinophilia in bronchoalveolar lavage. There was a complete recovery of late airway responses and a partial recovery of airway eosinophilia in recipients of antisense oligodeoxynucleotide treated cells. Macrophage ingestion of eosinophils was frequent in rats administered ,,T cells but reduced in recipients of antisense oligodeoxynucleotide treated cells. These results indicate that CD8+,, T cells inhibit late airway responses and airway eosinophilia through the secretion of IFN-,. Defective or altered ,, T-cell function may account for some forms of allergic asthma. [source] Human dendritic cells transfected with allergen-DNA stimulate specific immunoglobulin G4 but not specific immunoglobulin E production of autologous B cells from atopic individuals in vitroIMMUNOLOGY, Issue 2 2007Bettina König Summary Atopic/allergic diseases are characterized by T helper 2 (Th2)-dominated immune responses resulting in immunoglobulin E (IgE) production. DNA-based immunotherapies have been shown to shift the immune response towards Th1 in animal models. In further studies we showed that human dendritic cells (DC) transfected with allergen-DNA are able to stimulate autologous CD4+ T cells from atopic individuals to produce Th1 instead of Th2 cytokines and to activate interferon-, (IFN-,)-producing CD8+ T cells. The aim of this study was to analyse whether DC transfected with allergen-DNA are also able to influence immunoglobulin production of B cells from atopic donors. For this purpose, human monocyte-derived DC from grass-pollen allergic donors were transfected with an adenovirus encoding the allergen Phleum pratense 1 and cocultured with B cells, autologous CD4+ T cells, and CD40 ligand-transfected L-cells. B cells receiving help from CD4+ T cells stimulated with allergen-transfected dendritic cells produced more allergen-specific IgG4 compared to stimulation with allergen protein pulsed DC or medium, while total IgG4 production was not affected. In contrast, specific IgE production was not enhanced by stimulation with allergen-DNA transfected DC compared to medium and inhibited compared to allergen protein-pulsed DC with similar effects on total IgE production in vitro. Allergen-DNA transfected dendritic cells are able to direct the human allergic immune response from Th2-dominance towards Th1 and Tc1 also resulting in decreased IgE and increased IgG4 production. [source] Induction of potent cellular immune response in mice by hepatitis C virus NS3 protein with double-stranded RNAIMMUNOLOGY, Issue 1 2007Bo Jin Summary Double-stranded RNA is produced during virus replication and, together with the viral antigen, is responsible for inducing host antivirus immunity. The hepatitis C virus (HCV) non-structural protein-3 (NS3) has been implicated in the immune evasion of HCV, and is one of the prime targets for inducing immunity against HCV infection. Mice were immunized with recombinant NS3 protein (rNS3) and poly (I:C) emulsified in Montanide ISA 720 (M720). Cytokine production was assayed by enzyme-linked immunospot assay, and CD4+ IFN-,+ T helper (Th) cells or CD8+ IFN-,+ cytotoxic T lymphocytes were detected by flow cytometry. Anti-NS3 titre and immunoglobulin G2a (IgG2a) and IgG1 levels were monitored by enzyme-linked immunosorbent assay. Administration of rNS3 formulated in poly (I:C) and M720 induced anti-NS3 titres with a predominantly IgG2a isotype comparable to those induced by rNS3 in CpG-ODN and M720. The cytokine profiles showed that this formulation induced a Th1-biased immune response with several-fold more interferon-, (IFN-,)-producing cells than interleukin-4-producing cells. In contrast, rNS3 in M720 induced a Th2-biased immune response. The frequency of IFN-,-producing CD4+ and CD8+ cells induced by rNS3 in poly (I:C) and M720 was significantly higher than that induced by rNS3, rNS3 in M720, or rNS3 in poly (I:C), and was comparable to that induced by rNS3 in CpG-ODN with M720. The antigen-specific CD8+ T-cell immune response persisted for up to 7 months after immunization. In conclusion, poly (I:C) with rNS3 in M720 can elicit a strong and persistent Th1-biased immune response and a cytotoxic T-lymphocyte response through cross-priming in mice. This study highlighted a promising formulation for inducing an efficient cellular immune response against HCV that has potential for HCV vaccine development. [source] Interleukin-4 supports interleukin-12-induced proliferation and interferon-, secretion in human activated lymphoblasts and T helper type 1 cellsIMMUNOLOGY, Issue 1 2006Martin A. Kriegel Summary Interleukin-12 (IL-12) and IL-4 are known to differentially promote T helper (Th) cell differentiation. While IL-12 induces interferon-, (IFN-,) production and maturation of Th1 cells, IL-4 is thought to antagonize IL-12 and to favour Th2 development. Here we studied the combined action of various concentrations of common ,-chain (,c -chain) cytokines, including IL-4 and the Th1 cytokine IL-12, in human activated lymphoblasts and Th1 cells. IL-4 and IL-7 potentiated IL-12-induced proliferation at every concentration tested (1,10 ng/ml) without increasing rescue from apoptosis, indicating that proliferation was directly affected by these cytokine combinations. With regards to cytokine secretion, IL-2 together with IL-12 initiated tumour necrosis factor-, synthesis, enhanced IFN-, production, and shedding of soluble IL-2 receptor , as expected. Importantly, combining IL-4 with IL-12 also enhanced IFN-, secretion in lymphoblasts and a Th1 cell line. Investigating signal transduction in lymphoblasts induced by these cytokines, we found that not only IL-2 but also IL-4 enhances signal transducer and activator of transcription 3 (STAT3) tyrosine phosphorylation by IL-12. Tyrosine phosphorylations of janus kinase 2 (JAK-2), tyrosine kinase 2 (TYK2), extracellular signal-regulated kinase (ERK) and STAT4, STAT5 and STAT6 were not potentiated by combinations of these cytokines, suggesting specificity for increased STAT3 phosphorylation. In conclusion, two otherwise antagonizing cytokines co-operate in activated human lymphoblasts and Th1 cells, possibly via STAT3 as a converging signal. These data demonstrate that IL-4 can directly enhance human Th1 cell function independently of its known actions on antigen-presenting cells. These findings should be of importance for the design of cytokine-targeted therapies of human Th-cell-driven diseases. [source] The CD1d-binding glycolipid ,-galactosylceramide enhances humoral immunity to T-dependent and T-independent antigen in a CD1d-dependent mannerIMMUNOLOGY, Issue 1 2006Gillian A. Lang Summary Specific interaction of class II/peptide with the T-cell receptor (TCR) expressed by class II-restricted CD4+ T helper (Th) cells is essential for in vivo production of antibodies reactive with T-dependent antigen. In response to stimulation with CD1d-binding glycolipid, V,14+ TCR-expressing, CD1d-restricted natural killer T (NKT) cells may provide additional help for antibody production. We tested the hypothesis that the CD1d-binding glycolipid ,-galactosylceramide (,-GC) enhances production of antibodies reactive with T-dependent antigen in vivo. ,-GC enhanced antibody production in vivo in a CD1d-dependent manner in the presence of class II-restricted Th cells and induced a limited antibody response in Th-deficient mice. ,-GC also led to alterations in isotype switch, selectively increasing production of immunoglobulin G2b. Further analysis revealed that ,-GC led to priming of class II-restricted Th cells in vivo. Additionally, we observed that ,-GC enhanced production of antibodies reactive with T-independent antigen, showing the effects of NKT cells on B cells independently of Th cells. Our data show that NKT cells have multiple effects on the induction of a humoral immune response. We propose that NKT cells could be exploited for the development of novel vaccines where protective antibody is required. [source] Mechanisms of immune suppression by interleukin-10 and transforming growth factor-,: the role of T regulatory cellsIMMUNOLOGY, Issue 4 2006Alison Taylor Summary Specific immune suppression and induction of tolerance are essential processes in the regulation and circumvention of immune defence. The balance between allergen-specific type 1 regulatory (Tr1) cells and T helper (Th) 2 cells appears to be decisive in the development of allergy. Tr1 cells consistently represent the dominant subset specific for common environmental allergens in healthy individuals. In contrast, there is a high frequency of allergen-specific interleukin-4 (IL-4)-secreting T cells in allergic individuals. Allergen-specific immunotherapy can induce specific Tr1 cells that abolish allergen-induced proliferation of Th1 and Th2 cells, as well as their cytokine production. Tr1 cells utilize multiple suppressor mechanisms, such as IL-10 and transforming growth factor-, (TGF-,) as secreted cytokines and various surface molecules, such as cytotoxic T-lymphocyte antigen 4 and programmed death-1. IL-10 only inhibits T cells stimulated by low numbers of triggered T-cell receptors, which depend on CD28 costimulation. IL-10 inhibits CD28 tyrosine phosphorylation, preventing the binding of phosphatidylinositol 3-kinase p85 and consequently inhibiting the CD28 signalling pathway. In addition, IL-10 and TGF-, secreted by Tr1 cells skew the antibody production from immunoglobulin E (IgE) towards the non-inflammatory isotypes IgG4 and IgA, respectively. Induction of antigen-specific Tr1 cells can thus re-direct an inappropriate immune response against allergens or auto-antigens using a broad range of suppressor mechanisms. [source] Histamine and prostaglandin E2 up-regulate the production of Th2-attracting chemokines (CCL17 and CCL22) and down-regulate IFN-,-induced CXCL10 production by immature human dendritic cellsIMMUNOLOGY, Issue 4 2006Anne McIlroy Summary Effector memory T helper 2 (Th2) cells that accumulate in target organs (i.e. skin or bronchial mucosa) have a central role in the pathogenesis of allergic disorders. To date, the factors that selectively trigger local production of Th2-attracting chemokines remain poorly understood. In mucosa, at the sites of allergen entry, immature dendritic cells (DC) are in close contact with mast cells. Histamine and prostaglandin E2 (PGE2) are two mediators released by allergen-activated mast cells that favour the polarization of maturing DC into Th2-polarizing cells. We analysed here the effects of histamine and PGE2 on the prototypic, Th2-(CCL17, CCL22) versus Th1-(CXCL10) chemokine production by human DC. We report that histamine and PGE2 dose-dependently up-regulate CCL17 and CCL22 by monocyte-derived immature DC. These effects were potentiated by tumour necrosis factor-,, still observed in the presence of the Th1-cytokine interferon-, (IFN-,) and abolished by the immunomodulatory cytokine interleukin-10. In addition, histamine and PGE2 down-regulated IFN-,-induced CXCL10 production by monocyte-derived DC. These properties of histamine and PGE2 were observed at the transcriptional level and were mediated mainly through H2 receptors for histamine and through EP2 and EP4 receptors for PGE2. Finally, histamine and PGE2 also up-regulated CCL17 and CCL22 and decreased IFN-,-induced CXCL10 production by purified human myeloid DC. In conclusion, these data show that, in addition to polarizing DC into mature cells that promote naïve T-cell differentiation into Th2 cells, histamine and PGE2 may act on immature DC to trigger local Th2 cell recruitment through a selective control of Th1/Th2-attracting chemokine production, thereby contributing to maintain a microenvironment favourable to persistent immunoglobulin E synthesis. [source] Interleukin-16 inhibits interleukin-13 production by allergen-stimulated blood mononuclear cellsIMMUNOLOGY, Issue 1 2006Souad El Bassam Summary Expression of interleukin (IL)-16 is increased in bronchial mucosal biopsies of atopic asthmatics compared to normal controls. The functional significance of increased expression of IL-16 at sites of allergic inflammation is not yet clear. We have previously shown that IL-16 inhibits IL-5 secretion by allergen-stimulated peripheral blood mononuclear cells (PBMC). We investigated whether IL-16 inhibits the production of other T helper 2 cytokines, namely IL-13 and IL-4, by allergen-specific T cells. PBMC from ragweed-sensitive atopic subjects were stimulated with allergen extract for cytokine production in the presence or absence of rhIL-16. Production of cytokines was assessed by enzyme-linked immunosorbent assay and reverse transcription,polymerase chain reaction. To evaluate whether the modulatory effect of IL-16 on cytokine synthesis was mediated by interferon-, (IFN-,), IL-10, IL-12 or IL-18, allergen-stimulated PBMC were cultured in presence of IL-16 and neutralizing concentrations of relevant antibodies. Allergen-stimulated PBMC produced significantly elevated levels of IL-13 (90,740 pg/ml) as compared to unstimulated PBMC (0,375 pg/ml, P < 0·01). Addition of rhIL-16 resulted in down-regulation of IL-13 mRNA expression as well as significantly reduced amounts of IL-13 released by allergen-stimulated PBMC (0,457 pg/ml, P < 0·001), as observed for IL-5. No effect of IL-16 was observed on IL-4 mRNA expression. Treatment with IL-16 resulted in increased levels of IL-10 and IL-18 in allergen-stimulated cell culture. Neutralization of IFN-,, IL-12, IL-10 or IL-18 did not alter the inhibitory effects of IL-16 on IL-13 and IL-5 secretion by allergen-stimulated PBMC. IL-16 did not modify IL-13 synthesis by anti-CD3-stimulated CD4+ T cells, but it significantly reduced the production of IL-5. These data suggest that IL-16 may play an important immunoregulatory role in allergic states in response to allergen. [source] |