Heart Formation (heart + formation)

Distribution by Scientific Domains


Selected Abstracts


Second chromosome genes required for heart development in Drosophila melanogaster

GENESIS: THE JOURNAL OF GENETICS AND DEVELOPMENT, Issue 10 2007
Ye Tao
Abstract Heart development is an evolutionarily conserved process. The cardiac organ of Drosophila melanogaster is the dorsal vessel, a linear contractile tissue with cellular and morphogenetic similarities to the primitive heart tube formed at an early stage of vertebrate heart formation. Abundant evidence shows comparable intercellular signaling pathways and transcription factor networks are utilized in Drosophila and vertebrates, to specify cardiac progenitor cells and instruct their differentiation and function in forming the mature heart. With this proven conservation in mind, we screened the second chromosome of Drosophila for genetic intervals that harbor additional loci required for normal dorsal vessel morphogenesis. Our studies identified numerous regions, that when deleted, culminated in dorsal vessels with abnormal cell numbers and/or structural properties. Certain of the deficiency intervals were further characterized to identify individual genes essential for proper cardiac organ formation. Our analyses identified eight genes of diverse functions that are needed for dorsal vessel development. Several of these sequences have known vertebrate homologues, further supporting a conserved genetic basis for heart formation in Drosophila and higher eukaryotes. genesis 45:607,617, 2007. © 2007 Wiley-Liss, Inc. [source]


A novel mutation in the GATA4 gene in patients with Tetralogy of Fallot,,

HUMAN MUTATION, Issue 3 2006
Georges Nemer
Abstract In vertebrates, heart formation which integrates different structures and cell types is a complex process that involves a network of genes regulated by transcription factors. Proper spatiotemporal expression of these factors ensure the highly needed tight control of each step in organogenesis. A mistake at any step from cell-commitment to valve formation will have a major impact on heart morphogenesis and function leading to congenital heart disease (CHD). Cardiac abnormalities occur with an incidence of one per 100 live births and represent 25% of all congenital malformations. As an alternative approach to linkage-analysis of familial cases of CHD, we started screening familial and sporadic cases of CHDs in a highly consanguineous population for mutations in genes encoding cardiac-enriched transcription factors. The evolutionarily conserved role of these proteins in cardiac development suggested a role in CHD. In this study, we report a mutation in the gene encoding GATA4, one of the earliest markers of heart development. This mutation was found in two out of 26 patients with Tetralogy of Fallot (TOF), and in none of the 94 patients with different phenotypes included in the study, nor in 223 healthy individuals. The heterozygous mutation results in an amino acid substitution in the first zinc finger of GATA4 that reduced its transcriptional activation of downstream target genes, without affecting GATA4 ability to bind DNA, nor its interaction with ZFPM2. © 2006 Wiley-Liss, Inc. [source]


Genetic factors in congenital heart malformation

CLINICAL GENETICS, Issue 6 2008
G Andelfinger
Congenital heart disease is the commonest malformation in humans and contributes greatly to the burden of disease in infancy. Increasingly, developmental origins are also implicated in heart disease in adults. Significant advances have been made over the past decade in elucidating morphogenetic events of heart formation and their underlying molecular cascades, mostly in animal models. Clinical studies are increasingly successful in quantifying and unraveling genetic factors. This review focuses on recent progress made in understanding the genetic underpinnings of normal and abnormal heart formation and highlights the importance of understanding these mechanisms to improve patient management. [source]