Home About us Contact | |||
Heart Cycle (heart + cycle)
Selected AbstractsAssessment of the Tilting Properties of the Human Mitral Valve during Three Main Phases of the Heart Cycle: An Echocardiographic StudyECHOCARDIOGRAPHY, Issue 4 2006Daniel Vanhercke B.N., N.F.E.S.C., R.D.C.S. Rationale and Objectives: In experimental models of the left heart, the mitral valve (MV) is commonly implanted perpendicular to a central axis of the apex/MV. To adapt this to a more correct anatomical model, as well as for further studies of the left ventricle, we created a database of implantation angles of the MV and annulus during three main phases of the heart cycle, based on standard cardiac ultrasound measurements. Materials and Methods: Twenty-eight patients were studied with the standard cardiac ultrasound equipment. From the apical echo window, an anteroposterior (AP) plane and a perpendicular commisure-commisure (CC) plane were generated during three critical moments in the heart cycle: systole (S); diastole early filling (E); and diastole late filling (A). In both planes, the angles between the annular plane and each mitral leaflet, as well as the angle between a theoretical longitudinal axis through the apex and center of the MV orifice and the mitral annulus plane, were measured with a custom-made application of Matlab R14. Results: We observed an inclination of the angle mitral annulus/central left ventricle axis, with its lowest point in the direction of the aortic valve (AP plane) of 85°± 7° in systole (S), 88°± 8° in early diastole (E), and 88°± 7° in late diastole (A). In the CC plane, we observed an almost horizontal implantation of 91°± 5° in systole (S), 91°± 8° in early diastole (E), and 91°± 7° in late diastole (A). [source] New method of dynamic color doppler signal quantification in metastatic lymph nodes compared to direct polarographic measurements of tissue oxygenationINTERNATIONAL JOURNAL OF CANCER, Issue 6 2005Thomas Scholbach Abstract Tumor growth depends on sufficient blood and oxygen supply. Hypoxia stimulates neovascularization and is a known cause for radio- and chemoresistance. The objective of this study was to investigate the use of a novel ultrasound technique for the dynamic assessment of vascularization and oxygenation in metastatic lymph nodes. Twenty-four patients (age 44,78 years) with cervical lymph node metastases of squamous cell head and neck cancer were investigated by color duplex sonography and 17 (age 46,78 years) were investigated additionally with polarography. Sonography was performed after contrast enhancer infusion under defined conditions. Intranodal perfusion data (color hue, colored area) were measured automatically by a novel software technique. This allows an evaluation of blood flow dynamics by calculating perfusion intensity,velocity, perfused area, as well as the novel parameters tissue resistance index (TRI) and tissue pulsatility index (TPI),for each point of a complete heart cycle. Tumor tissue pO2 was measured by means of polarographic needle electrodes placed intranodally. The sonographic and polarographic data were correlated using Pearson's test. Sonography demonstrated a statistically significant inverse correlation between hypoxia and perfusion and significant TPI and TRI changes with different N-stages. The percentage of nodal fraction with less than 10 mmHg oxygen saturation was significantly inversely correlated with lymph node perfusion (r = ,0.551; p = 0.021). Nodes with a perfusion of less than 0.05 cm/sec flow velocity showed significantly larger hypoxic areas (p = 0.006). Significant differences of TPI and TRI existed between nodes in stage N1 and N2/N3 (p = 0.028 and 0.048, respectively). This new method of dynamic signal quantification allows a noninvasive and quantitative assessment of tumor and metastatic lymph node perfusion by means of commonly available ultrasound equipment. © 2004 Wiley-Liss, Inc. [source] Time-resolved flow measurement in the isolated rat heart: Characterization of left coronary artery stenosisMAGNETIC RESONANCE IN MEDICINE, Issue 3 2003Sascha Köhler Abstract The investigation of flow behavior in coronary arteries is of great importance for an understanding of heart failure and heart regulation mechanisms. The purpose of the present study was to demonstrate that flow velocity can be quantified in the coronary arteries of the isolated rat heart with high-resolution phase contrast MRI. A phase contrast cine-FLASH imaging sequence was used for flow quantification with an in-plane resolution of 70 ,m and a slice thickness of 500 ,m. With time-resolved measurements, coronary flow over the heart cycle was analyzed. Furthermore, the flow behavior in coronary stenosis was investigated and the degree of stenosis was quantified with MR phase contrast imaging. To achieve the required spatial resolution and a satisfactory signal-to-noise ratio, the experiments were performed at 11.75 T. Magn Reson Med 50:449,452, 2003. © 2003 Wiley-Liss, Inc. [source] An Approach to Measure Atrial and Ventricular Heart Rate Variability Using Pacemaker-Mediated Intracardiac ElectrogramsPACING AND CLINICAL ELECTROPHYSIOLOGY, Issue 12 2003ANDREAS SCHUCHERT Heart rate variability (HRV) measurements are usually performed from ventricular beat-to-beat intervals because of the difficulty to precisely locate the P wave fiducial point in surface ECG recordings. The aim of the study was to describe an approach to determine the atrial and ventricular HRV using pacemaker-mediated intracardiac electrograms. Twelve patients with the dual chamber pacemaker Logos were included. The atrial and ventricular intracardiac electrograms were transmitted with the high resolution telemetry channel of the pacemaker to an external recorder for 20 minutes while the patients were supine. During the measurements the patients were in sinus rhythm with intrinsic AV conduction. After computer assisted triggering of the atrial and ventricular events, the resultant intervals were used to calculate the standard deviation of all NN intervals (SDNN), the square root of the mean squared differences of successive NN intervals (RMSSD), and the percentage of successive interval differences >50 ms (pNN50). The differences between atrial and ventricular HRV-Indexes were assessed for each patient with a cut-off point of 1%. Differences >1% were analyzed in detail. A total of 15,504 heart cycles were analyzed. A manual correction due to false or not triggered atrial or ventricular events was necessary in 0.9%. The overall difference between atrial and ventricular pNN50 was ,0.5%±2.1%and differences >1% were observed in 4 patients. The NN50 events occurred in the atrial as well as in the related ventricular interval in 84%. NN50 events occurred only in the atrium in 6% and only in the ventricle in 10%. The mean differences between atrial and ventricular SDNN and RMSSD were0.4±2.1ms and ,0.1±3.5 mswith intra-individual differences <1%. The present study described a new method and demonstrated its feasibility to determine atrial as well as ventricular HRV from pacemakermediated intracardiac electrograms. The differences for pNN50 indicate that ventricular HRV did not reflect the changes of sinus node activity in all patients. (PACE 2003; 26:2272,2274) [source] |