Heart Chambers (heart + chamber)

Distribution by Scientific Domains


Selected Abstracts


MAP kinase activation in avian cardiovascular development

DEVELOPMENTAL DYNAMICS, Issue 4 2004
Christine M. Liberatore
Abstract Signaling pathways mediated by receptor tyrosine kinases (RTK) and mitogen-activated protein kinase (MAPK) activation have multiple functions in the developing cardiovascular system. The localization of diphosphorylated extracellular signal regulated kinase (dp-ERK) was monitored as an indicator of MAPK activation in the forming heart and vasculature of avian embryos. Sustained dp-ERK expression was observed in vascular endothelial cells of embryonic and extraembryonic origins. Although dp-ERK was not detected during early cardiac lineage induction, MAPK activation was observed in the epicardial, endocardial, and myocardial compartments during heart chamber formation. Endocardial expression of dp-ERK in the valve primordia and heart chambers may reflect differential cell growth associated with RTK signaling in the heart. dp-ERK localization in the epicardium, subepicardial fibroblasts, myocardial fibroblasts, and coronary vessels is consistent with MAPK activation in epicardial-derived cell lineages. The complex temporal,spatial regulation of dp-ERK in the heart supports diverse regulatory functions for RTK signaling in different cell populations, including the endocardium, myocardium, and epicardial-derived cells during cardiac organogenesis. Developmental Dynamics 230:773,780, 2004. © 2004 Wiley-Liss, Inc. [source]


Development of an Echocardiographic Method for Choosing the Best Fitting Single-Pass VDD Lead

PACING AND CLINICAL ELECTROPHYSIOLOGY, Issue 5 2002
WEI-HSIAN YIN
YIN, W.-H., et al.: Development of an Echocardiographic Method for Choosing the Best Fitting Single-Pass VDD Lead. To achieve stable single-lead VDD pacing, a selection of the electrode with the optimal distance between the lead tip and the floating atrial dipole (AV distance [AVD]) is important. The authors hypothesized that the size of the right heart chambers may affect atrial sensing, and that measurement of their internal dimension at end-diastole (RHIDd) in the apical four chamber view by transthoracic echocardiography may aid in choosing the proper AVD. Twenty-six consecutive cases that had undergone VDD pacer implantation using the conventional chest X ray were examined retrospectively by the echocardiographic method. The chest x-ray method properly selected a lead with optimal atrial sensing, defined as minimum P wave amplitude , 1.0 mV, for only 20 (77%) of 26 patients. By comparing these results with their respective RHIDd, a cut-off point of 13 cm was obtained that indicated a criterion for choosing the proper AVD. The indication was that if the RHIDd was , 13 cm, a lead with an AVD of 15.5/16 cm should have been used; if the RHIDd was < 13 cm, a lead with an AVD of 13/13.5 cm should have been chosen. Using the echocardiographic method, all six patients who had suboptimal atrial sensing could be identified and classified as having missized (four undersized; two oversized) permanent leads. In conclusion, the described method provides a promising preoperative assessment of the best fitting electrode length in single lead VDD pacing. A prospective study is ongoing to verify its applicability. [source]


Expression of Lymphatic Markers During Avian and Mouse Cardiogenesis

THE ANATOMICAL RECORD : ADVANCES IN INTEGRATIVE ANATOMY AND EVOLUTIONARY BIOLOGY, Issue 2 2010
Ganga Karunamuni
Abstract The adult heart has been reported to have an extensive lymphatic system, yet the development of this important system during cardiogenesis is still largely unexplored. The nuclear-localized transcription factor Prox-1 identified a sheet of Prox-1-positive cells on the developing aorta and pulmonary trunk in avian and murine embryos just before septation of the four heart chambers. The cells coalesced into a branching lymphatic network that spread within the epicardium to cover the heart. These vessels eventually expressed the lymphatic markers LYVE-1, VEGFR-3, and podoplanin. Before the Prox-1-positive cells were detected in the mouse epicardium, LYVE-1, a homologue of the CD44 glycoprotein, was primarily expressed in individual epicardial cells. Similar staining patterns were observed for CD44 in avian embryos. The proximity of these LYVE-1/CD44-positive mesenchymal cells to Prox-1-positive vessels suggests that they may become incorporated into the lymphatics. Unexpectedly, we detected LYVE-1/PECAM/VEGFR-3-positive vessels within the embryonic and adult myocardium, which remained Prox-1/podoplanin-negative. Lymphatic markers were surprisingly found in adult rat and embryonic mouse epicardial cell lines, with Prox-1 also exhibiting nuclear-localized expression in primary cultures of embryonic avian epicardial cells. Our data identified three types of cells in the embryonic heart expressing lymphatic markers: (1) Prox-1-positive cells from an extracardiac source that migrate within the serosa of the outflow tract into the epicardium of the developing heart, (2) individual LYVE-1-positive cells in the epicardium that may be incorporated into the Prox-1-positive lymphatic vasculature, and (3) LYVE-1-positive cells/vessels in the myocardium that do not become Prox-1-positive even in the adult heart. Anat Rec, 2010. © 2009 Wiley-Liss, Inc. [source]


The Development of the Epicardium in the Sturgeon Acipenser naccarii

THE ANATOMICAL RECORD : ADVANCES IN INTEGRATIVE ANATOMY AND EVOLUTIONARY BIOLOGY, Issue 10 2009
José M. Icardo
Abstract This article reports on the development of the epicardium in alevins of the sturgeon Acipenser naccarii, aged 4,25 days post-hatching (dph). Epicardial development starts at 4 dph with formation of the proepicardium (PE) that arises as a bilateral structure at the boundary between the sinus venosus and the duct of Cuvier. The PE later becomes a midline organ arising from the wall of the sinus venosus and ending at the junction between the liver, the sinus venosus and the transverse septum. This relative displacement appears related to venous reorganization at the caudal pole of the heart. The mode and time of epicardium formation is different in the various heart chambers. The conus epicardium develops through migration of a cohesive epithelium from the PE villi, and is completed through bleb-like aggregates detached from the PE. The ventricular epicardium develops a little later, and mostly through bleb-like aggregates. The bulbus epicardium appears to derive from the mesothelium located at the junction between the outflow tract and the pericardial cavity. Strikingly, formation of the epicardium of the atrium and the sinus venosus is a very late event occurring after the third month of development. Associated to the PE, a sino-ventricular ligament develops as a permanent connection. This ligament contains venous vessels that communicate the subepicardial coronary plexus and the sinus venosus, and carries part of the heart innervation. The development of the sturgeon epicardium shares many features with that of other vertebrate groups. This speaks in favour of conservative mechanisms across the evolutionary scale. Anat Rec, 2009. © 2009 Wiley-Liss, Inc. [source]


Evidence by Expression Analysis of Candidate Genes for Congenital Heart Defects in the NF1 Microdeletion Interval

ANNALS OF HUMAN GENETICS, Issue 5 2005
M. Venturin
Summary It was recently reported that congenital heart disease is significantly more frequent in patients with NF1 microdeletion syndrome than in those with classical NF1. The outcome of congenital heart disease in this subset of patients is likely caused by the haploinsufficiency of gene/s in the deletion interval. Following in silico analysis of the deleted region, we found two genes known to be expressed in adult heart, the Joined to JAZF1 (SUZ12) and the Centaurin-alpha 2 (CENTA2) genes, and seven other genes with poorly defined patterns of expression and function. With the aim of defining their expression profiles in human fetal tissues (15th,21st weeks of gestation), expression analysis by RT-PCR and Northern blotting was performed. C17orf40, SUZ12 and CENTA2 were found to be mainly expressed in fetal heart, and following RT-PCR on mouse embryos and embryonic heart and brain at different stages of development, we found that the orthologous genes C17orf40, Suz12 and Centa2 are also expressed in early stages of development, before and during the formation of the four heart chambers. The presence of binding sites for Nkx2-5, a transcription factor expressed early in heart development, in all three mouse orthologous genes was predicted by bioinformatics, thus reinforcing the hypothesis that these genes might be involved in heart development and may be plausible candidates for congenital heart disease. [source]