Home About us Contact | |||
Head Model (head + model)
Selected AbstractsApplication of the equivalent multipole moment method with polar translations to forward calculation of neuromagnetic fieldsELECTRONICS & COMMUNICATIONS IN JAPAN, Issue 4 2008Shoji Hamada Abstract This paper describes an application of the equivalent multipole moment method (EMMM) with polar translations to calculation of magnetic fields induced by a current dipole placed in a human head model. Although the EMMM is a conventional Laplacian field solver based on spherical harmonic functions, the polar translations enable it to treat eccentric and exclusive spheres in arbitrary arrangements. The head model is composed of seven spheres corresponding to skin, two eyeballs, skull, cerebral spinal fluid, gray matter, and white matter. The validity of the calculated magnetic fields and the magnetic flux linkages with a loop coil located near the model is successfully confirmed by the reciprocity theorem derived by Eaton. © 2008 Wiley Periodicals, Inc. Electron Comm Jpn, 91(4): 34,44, 2008; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/ecj.10079 [source] Improved EEG source analysis using low-resolution conductivity estimation in a four-compartment finite element head modelHUMAN BRAIN MAPPING, Issue 9 2009Seok Lew Abstract Bioelectric source analysis in the human brain from scalp electroencephalography (EEG) signals is sensitive to geometry and conductivity properties of the different head tissues. We propose a low-resolution conductivity estimation (LRCE) method using simulated annealing optimization on high-resolution finite element models that individually optimizes a realistically shaped four-layer volume conductor with regard to the brain and skull compartment conductivities. As input data, the method needs T1- and PD-weighted magnetic resonance images for an improved modeling of the skull and the cerebrospinal fluid compartment and evoked potential data with high signal-to-noise ratio (SNR). Our simulation studies showed that for EEG data with realistic SNR, the LRCE method was able to simultaneously reconstruct both the brain and the skull conductivity together with the underlying dipole source and provided an improved source analysis result. We have also demonstrated the feasibility and applicability of the new method to simultaneously estimate brain and skull conductivity and a somatosensory source from measured tactile somatosensory-evoked potentials of a human subject. Our results show the viability of an approach that computes its own conductivity values and thus reduces the dependence on assigning values from the literature and likely produces a more robust estimate of current sources. Using the LRCE method, the individually optimized four-compartment volume conductor model can, in a second step, be used for the analysis of clinical or cognitive data acquired from the same subject. Hum Brain Mapp, 2009. © 2008 Wiley-Liss, Inc. [source] Lack of uptake of Renibacterium salmoninarum by gill epithelia of rainbow troutJOURNAL OF FISH BIOLOGY, Issue 5 2000D. Mcintosh The role of rainbow trout (Oncorhynchus mykiss, Walbaum) gill cells in uptake of the salmonid pathogen Renibacterium salmoninarum was examined using in vitro, whole animal and isolated perfused head models. Uptake of the pathogen was observed only when dissected gill tissue was exposed to the live pathogen. In contrast, live cells of Yersinia ruckeri interacted with the gill epithelia in the isolated perfused head model, confirming the findings of previous studies with whole animal and in vitro systems. These results are discussed in relation to the role of gill tissue in bacterial kidney disease (BKD) pathogenesis and in antigen trapping. [source] Statistical evaluation of time-dependent metabolite concentrations: estimation of post-mortem intervals based on in situ1H-MRS of the brainNMR IN BIOMEDICINE, Issue 3 2005Eva Scheurer Abstract Knowledge of the time interval from death (post-mortem interval, PMI) has an enormous legal, criminological and psychological impact. Aiming to find an objective method for the determination of PMIs in forensic medicine, 1H-MR spectroscopy (1H-MRS) was used in a sheep head model to follow changes in brain metabolite concentrations after death. Following the characterization of newly observed metabolites (Ith et al., Magn. Reson. Med. 2002; 5: 915,920), the full set of acquired spectra was analyzed statistically to provide a quantitative estimation of PMIs with their respective confidence limits. In a first step, analytical mathematical functions are proposed to describe the time courses of 10 metabolites in the decomposing brain up to 3 weeks post-mortem. Subsequently, the inverted functions are used to predict PMIs based on the measured metabolite concentrations. Individual PMIs calculated from five different metabolites are then pooled, being weighted by their inverse variances. The predicted PMIs from all individual examinations in the sheep model are compared with known true times. In addition, four human cases with forensically estimated PMIs are compared with predictions based on single in situ MRS measurements. Interpretation of the individual sheep examinations gave a good correlation up to 250,h post-mortem, demonstrating that the predicted PMIs are consistent with the data used to generate the model. Comparison of the estimated PMIs with the forensically determined PMIs in the four human cases shows an adequate correlation. Current PMI estimations based on forensic methods typically suffer from uncertainties in the order of days to weeks without mathematically defined confidence information. In turn, a single 1H-MRS measurement of brain tissue in situ results in PMIs with defined and favorable confidence intervals in the range of hours, thus offering a quantitative and objective method for the determination of PMIs. Copyright © 2004 John Wiley & Sons, Ltd. [source] Current density threshold for the stimulation of neurons in the motor cortex areaBIOELECTROMAGNETICS, Issue 6 2002T. Kowalski Abstract The aim of this study was to determine a current density threshold for exciting the motor cortex area of the brain. The current density threshold for excitation of nerve fibres (20 ,m in diameter) found in the literature is approximately 1 A/m2 at frequencies lower than 1 kHz. In consideration of a safety factor of 100, the International Commission on Non-Ionizing Radiation Protection (ICNIRP) recommends to restrict the exposure to 0.01 A/m2. The electromagnetic stimulation of neurons in the motor cortex is used in the clinical diagnosis of nerve lesions and neuropathy by means of magnetic or electrical transcranial stimulation. Combining medical data from clinical studies and technical specifications of the Magstim® Model 200 stimulator, we were able to compute the current density threshold for the excitation of the human motor cortex by means of the finite element method (FEM). A 3D-CAD head model was built on the basis of magnetic resonance imaging (MRI) slices and segmented into four anatomical structures (scalp, skull, brain, and ventricular system) with different conductivities. A current density threshold for the stimulation of the motor cortex area of the upper limbs of 6 and 2.5 A/m2 at 2.44 kHz and 50 Hz, respectively, was calculated. As these values lie above the recommended ICNIRP values by two orders of magnitude there is no need for lower safety standards with regard to stimulation of the brain. Bioelectromagnetics 23:421,428, 2002. © 2002 Wiley-Liss, Inc. [source] |