Home About us Contact | |||
Head Groups (head + groups)
Selected AbstractsA Metathesis Approach for the Preparation of Polyhydroxylated Compounds as Head Groups in Surfactant SynthesisEUROPEAN JOURNAL OF ORGANIC CHEMISTRY, Issue 4 2006Kristina Neimert-Andersson Abstract Starting from methyl-,- D -glucopyranoside, an efficient protocol for the preparation of polyhydroxylated surfactant head-groups is demonstrated and applied in the synthesis of a typical surfactant. The key transformation is a metathesis reaction between two monosaccharide residues to afford an octahydroxydecen. The importance of a strategic protecting-group constellation for a successful metathesis reaction is also investigated. (© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2006) [source] Alignment and structural analysis of membrane polypeptides by 15N and 31P solid-state NMR spectroscopyCONCEPTS IN MAGNETIC RESONANCE, Issue 2 2003Burkhard Bechinger Abstract In contrast to solution NMR spectroscopy, where complete or almost complete averaging leads to isotropic values, the anisotropic character of nuclear interactions is apparent in solid-state NMR spectra. The orientation dependence of chemical shift and dipolar or quadrupolar interactions has been used to obtain dynamic as well as angular information from polypeptides that strongly interact with phospholipid bilayers. This article illustrates the advantageous characteristics of the anisotropic 15N or 31P chemical shift interactions that in a direct manner allow one to obtain information on the alignment of helical polypeptides or of phospholipid head groups with respect to the membrane normal. © 2003 Wiley Periodicals, Inc. Concepts Magn Reson 18A: 130,145, 2003 [source] Imidazolium based ionic liquid crystals: structure, photophysical and thermal behaviour of [Cnmim]Br·xH2O (n = 12, 14; x=0, 1)CRYSTAL RESEARCH AND TECHNOLOGY, Issue 11 2008A. Getsis Abstract The long chain imidazolium halides [Cnmim]Br·xH2O (n = 10, 12; x = 0, 1) have been synthesized and their structural and thermal behaviour together with their photophysical properties characterized. X-ray structure analyses of the monohydrates ([C12mim]Br·H2O: triclinic, P1, no. 2, Z = 2, Pearson code aP112, a = 550.0(5) pm, b = 779.4(5) pm, c = 2296.1(5) pm, , = 81.89(5)°, , = 83.76(5)°, , = 78.102(5)°, 3523 unique reflections with Io > 2,(Io), R1 = 0.0263, wR2 = 0.0652, GooF = 1.037, T = 263(2) K; [C14mim]Br,H2O: triclinic, P1, no. 2, Z = 12, Pearson code aP11, a = 549.86(8) pm, 782.09(13) pm, c = 2511.3(4) pm, , = 94.86(2)°, , = 94.39(2)°, , = 101.83(2)°, 2063 unique reflections with Io > 2,(Io), R1 = 0.0429, wR2 = 0.0690, GooF = 0.770, T = 293(2) K) show for both compounds similar bilayered structures. Sheets composed of hydrophilic structure regions constituted by positively charged imidazolium head groups, bromide anions and hydrogen bonded water alternate with hydrophobic areas formed by interdigitated long alkyl chains belonging to imidazolium cations with different orientation. Combined differential scanning calorimetry and polarizing optical microscopy shows that the monohydrates as well as the anhydrous imidazolium salts are thermotropic liquid crystals which adopt smectic mesophases. The mesophase region is larger in case of the monohydrates when compared to the anhydrous compounds indicating that water obviously stabilizes the mesophase. All compounds show an intense whitish photoluminescence with short lived (1,,1,*) and long lived (1,,3,*) transitions. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source] Monomeric and polymeric anionic gemini surfactants and mixed surfactant systems in micellar electrokinetic chromatography.ELECTROPHORESIS, Issue 2 2005Part II: Characterization of chemical selectivity using two linear solvation energy relationship models Abstract Sodium di(undecenyl) tartarate monomer (SDUT), a vesicle-forming amphiphilic compound possessing two hydrophilic carboxylate headgroups and two hydrophobic undecenyl chains, was prepared and polymerized to form a polymeric vesicle (i.e., poly-SDUT). The anionic surfactants of SDUT and poly-SDUT (carboxylate head group) and sodium dodecyl sulfate, SDS (sulfate head groups) as well as mixed surfactant systems (SDS/SDUT, SDS/poly-SDUT, and SDUT/poly-SDUT) were applied as pseudostationary phases in micellar electrokinetic chromatography (MEKC). Two linear solvation energy relationship (LSER) models, i.e., solvatochromic and solvation parameter models, were successfully applied to investigate the effect of the type and composition of pseudostationary phases on the retention mechanism and selectivity in MEKC. The solvatochromic and solvation parameter models were used to help understand the fundamental nature of the solute-pseudostationary phase interactions and to characterize the properties of the pseudostationary phases (e.g., solute size and hydrogen bond-accepting ability for all pseudostationary phases). The solute types were found to have a significant effect on the LSER system coefficients and on the predicted retention factors. Although both LSER models provide the same information, the solvation parameter model is found to provide much better results both statistically and chemically than the solvatochromic model. [source] Detection of microbial biomass by intact polar membrane lipid analysis in the water column and surface sediments of the Black SeaENVIRONMENTAL MICROBIOLOGY, Issue 10 2009Florence Schubotz Summary The stratified water column of the Black Sea produces a vertical succession of redox zones, stimulating microbial activity at the interfaces. Our study of intact polar membrane lipids (IPLs) in suspended particulate matter and sediments highlights their potential as biomarkers for assessing the taxonomic composition of live microbial biomass. Intact polar membrane lipids in oxic waters above the chemocline represent contributions of bacterial and eukaryotic photosynthetic algae, while anoxygenic phototrophic bacteria and sulfate-reducing bacteria comprise a substantial amount of microbial biomass in deeper suboxic and anoxic layers. Intact polar membrane lipids such as betaine lipids and glycosidic ceramides suggest unspecified anaerobic bacteria in the anoxic zone. Distributions of polar head groups and core lipids show planktonic archaea below the oxic zone; methanotrophic archaea are only a minor fraction of archaeal biomass in the anoxic zone, contrasting previous observations based on the apolar derivatives of archaeal lipids. Sediments contain algal and bacterial IPLs from the water column, but transport to the sediment is selective; bacterial and archaeal IPLs are also produced within the sediments. Intact polar membrane lipid distributions in the Black Sea are stratified in accordance with geochemical profiles and provide information on vertical successions of major microbial groups contributing to suspended biomass. This study vastly extends our knowledge of the distribution of complex microbial lipids in the ocean. [source] Deprotonation of Indole Derivatives in Aqueous Cationic SurfactantsEUROPEAN JOURNAL OF ORGANIC CHEMISTRY, Issue 5 2004Nicoletta Spreti Abstract Deprotonations of 5-nitroindole, 1a, and its 2-carboxylate ion, 2a, have been monitored in 0.01, 0.1, and 0.5 M NaOH in micellar solutions of cetyl trialkylammonium bromide, alkyl = Me, Et, nPr, nBu, CTABr, CTEABr, CTPABr, CTBABr. Extents of deprotonation (% f) have been fitted using the pseudophase model of micellar effects with interionic competition described by ion exchange or by independent association constants. Both treatments indicate that base dissociation constants in dilute OH, are lower than in water by factors of ca. 3,11, and decrease with increasing bulk of the head groups, and that these factors increase modestly as the OH, concentration increases to 0.5 M. (© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2004) [source] Manifestation of a Chiral Smectic C Phase in Diphenylbutadiene-Cored Bolaamphiphilic Sugars,ADVANCED FUNCTIONAL MATERIALS, Issue 11 2008Suresh Das Abstract A series of symmetrical bolaamphiphiles possessing a diphenylbutadiene core and glucopyranoside head groups linked together by oligomethylene spacers, were synthesized and their thermotropic liquid crystalline properties investigated by polarized light optical microscopy, differential scanning calorimetry, X-ray diffraction and electro-optic switching. In spite of the presence of chiral centers, amphiphilic sugars in general do not exhibit macroscopic chirality and this phenomenon is attributed to strong hydrogen bonding between sugar head groups resulting in microphase-segregated layer like arrangements. In the present study all the molecules investigated exhibited the smectic C* phase, i.e., tilted lamellar phase with macroscopic chiral ordering of the molecules. The stability of this phase increased with increase in the length of the oligomethylene spacers. Whereas for derivatives with spacers containing ,4 methylene groups, the smectic C* phase was observed only in the cooling phase, for those containing spacers with ,5 methylene groups this phase was observed both in the heating and cooling cycles. The absorption and fluorescence spectra of these materials suggest that the unusual observation of macroscopic chirality in these bolaamphiphiles containing free hydroxyl groups could be attributed to self-aggregating behavior of the diphenylbutadiene core. [source] Effects of detergents on the secondary structures of prion protein peptides as studied by CD spectroscopyJOURNAL OF PEPTIDE SCIENCE, Issue 4 2003Dr Yoshihiro Kuroda Abstract Pathogenic prion proteins (PrPSc) are thought to be produced by ,-helical to ,-sheet conformational changes in the normal cellular prion proteins (PrPC) located solely in the caveolar compartments. In order to inquire into the possible conformational changes due to the influences of hydrophobic environments within caveolae, the secondary structures of prion protein peptides were studied in various kinds of detergents by CD spectra. The peptides studied were PrP(129,154) and PrP(192,213); the former is supposed to assume ,-sheets and the latter ,-helices, in PrPSc. The secondary structure analyses for the CD spectra revealed that in buffer solutions, both PrP(129,154) and PrP(192,213) mainly adopted random-coils (,60%), followed by ,-sheets (30%,40%). PrP(129,154) showed no changes in the secondary structures even in various kinds of detergents such as octyl-,- D -glucopyranoside (OG), octy-,- D -maltopyranoside (OM), sodium dodecyl sulfate (SDS), Zwittergent 3,14 (ZW) and dodecylphosphocholine (DPC). In contrast, PrP(192,213) changed its secondary structure depending on the concentration of the detergents. SDS, ZW, OG and OM increased the ,-helical content, and decreased the ,-sheet and random-coil contents. DPC also increased the ,-helical content, but to a lesser extent than did SDS, ZW, OG or OM. These results indicate that PrP(129,154) has a propensity to adopt predominantly ,-sheets. On the other hand, PrP(192,213) has a rather fickle propensity and varies its secondary structure depending on the environmental conditions. It is considered that the hydrophobic environments provided by these detergents may mimic those provided by gangliosides in caveolae, the head groups of which consist of oligosaccharide chains containing sialic acids. It is concluded that PrPC could be converted into a nascent PrPSc having a transient PrPSc like structure under the hydrophobic environments produced by gangliosides. Copyright © 2003 European Peptide Society and John Wiley & Sons, Ltd. [source] Influences of alkyl group chain length and polar head group on chemical skin permeation enhancementJOURNAL OF PHARMACEUTICAL SCIENCES, Issue 8 2001Kevin S. Warner Abstract Previous investigations in our laboratory on the influence of the n -alkanols and the 1-alkyl-2-pyrrolidones as skin permeation enhancers for steroid molecules as permeants demonstrated that the enhancer potencies (based on aqueous concentration values) of these two homologous series were the same when compared at the same alkyl chain length; that is, the contribution of the hydroxyl group and that of the pyrrolidone group to enhancer potency were the same. The purpose of the present study was to further investigate what was believed to be a somewhat surprising finding, and two additional homologous series, the 1,2-alkanediols and N,N -dimethylalkanamides, were selected for study as enhancers. Corticosterone (CS) flux enhancement along the lipoidal pathway of hairless mouse skin stratum corneum was determined with 1,2-hexane-, 1,2-octane-, and 1,2-decanediol and with N,N -dimethylhexanamide, N,N - dimethylheptanamide, N,N -dimethyloctanamide, and N,N -dimethylnonanamide as enhancers. The enhancement factor (E) for the lipoidal pathway was calculated from the CS permeability coefficient and the CS solubility data over a 4 to 100 range of E values. Comparisons of the enhancer potencies of all four homologous series revealed that the enhancer potencies of all were very nearly the same when compared at equal alkyl group chain length. Moreover, the contribution of each of the polar head groups toward the enhancer potency was essentially constant, independent of the alkyl group chain length. It was reasoned that this outcome was either the result of the random selection of four polar head groups making the same contribution to enhancer potency or the result of these particular polar head groups not contributing to enhancer potency. To test the hypothesis that the former was more likely than the latter and that a suitable semipolar organic phase may mimic the microenvironment of the polar head group at the site of enhancer action, n -octanol,phosphate buffered saline (PBS) and n -hexane,PBS partition coefficients were determined for all the enhancers. The n -octanol,PBS partition coefficients for the enhancers, but not the n -hexane,PBS partition coefficients, were very nearly the same when compared at equal alkyl group chain lengths; this result supports the hypothesis that each of the four polar head groups likely contributes the same toward the enhancer potency and locates in the semipolar region of the hairless mouse skin stratum corneum lipid bilayers, which is well-approximated by water-saturated n -octanol. © 2001 Wiley-Liss, Inc. and the American Pharmaceutical Association J Pharm Sci 90:1143,1153, 2001 [source] SN2 reaction of a sulfonate ester in the presence of alkyltriphenylphosphonium bromides and mixed cationic-cationic systemsJOURNAL OF PHYSICAL ORGANIC CHEMISTRY, Issue 5 2006Michael M. Mohareb Abstract The effects of alkyltriphenylphosphonium bromides (CnTPB, n,=,10, 12, 14, 16) on the rates of SN2 reactions of methyl 4-nitrobenzenesulfonate and bromide ion have been studied. Observed first-order rate constants are significantly higher than those found for other cationic surfactants for the same reaction. The results have been analyzed by the pseudophase model of micellar kinetics and show true micellar catalysis in the sense that second-order micellar rate constants are higher than the second-order rate constants in water. An attempt has also been made to investigate mixed cationic,cationic surfactant systems with respect to observed rates and pseudophase regression parameters. In addition, modeling of some cationic head groups has illustrated possible differences in head group charges and counterion interactions that may prove kinetically relevant. Copyright © 2006 John Wiley & Sons, Ltd. [source] Direct functionalization of polyisobutylene by living initiation with ,-methylstyrene epoxideJOURNAL OF POLYMER SCIENCE (IN TWO SECTIONS), Issue 8 2002J. Song Abstract This article describes the synthesis and characterization of polyisobutylene (PIB) carrying one primary hydroxyl head group and a tertiary chloride end group, [PhC(CH3)(CH2OH),PIB,CH2C(CH3)2Cl] prepared with direct functionalization via initiation. The polymerization of isobutylene was initiated with the ,-methylstyrene epoxide/titanium tetrachloride system. Living conditions were obtained from ,75 to ,50 °C (198,223 K). Low molecular weight samples (number-average molecular weight , 4000 g/mol) were prepared under suitable conditions and characterized by Fourier transform infrared and 1H NMR spectroscopy. The presence of primary hydroxyl head groups in PIB was verified by both methods. Quantitative Fourier transform infrared with 2-phenyl-1-propanol calibration and 1H NMR performed on both the hydroxyl-functionalized PIB and its reaction product with trimethylchlorosilane showed that each polymer chain carried one primary hydroxyl head group. The synthetic methodology presented here is an effective and simple route for the direct functionalization of PIB. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 1005,1015, 2002 [source] Novel Biomembrane-Mimicking Polymer Surface with Environmental ResponsivenessMACROMOLECULAR RAPID COMMUNICATIONS, Issue 17 2005Hong Tan Abstract Summary: In this article, we designed and synthesized novel segmented poly(carbonate urethane)s containing both hydrophobic fluorinated alkyl group and hydrophilic phosphatidylcholine polar head groups on the side chain. The contact angle measurement, XPS, together with ATR-IR investigation indicated a reversible overturn of the phosphatidylcholine groups with the movement of the hydrophobic fluorinated alkyl groups when the samples were treated in dry air or water. The change in environment from air to water induced a reorganization of the surface in order to minimize the interfacial free energy, resulting in a macroscopic change of surface wettability. The good environmental responsiveness of such biomembrane-mimicking films may find successful applications as biomaterials. Environmentally responsive surface using FPCPCU50 as an example; FPCPCU50 coated on aligned carbon nanotube film and dried in vacuum at 50,°C for 7 h and sample c treated in hot water at 80,°C for 1 h. [source] A New View of the Anionic Diene Polymerization MechanismMACROMOLECULAR SYMPOSIA, Issue 1 2004A.Z. Niu Abstract We investigated the anionic polymerization of butadiene in d-heptane solvent using tert -butyl lithium as initiator. Two complementary techniques were used to follow the polymerization processes: 1H NMR and small angle neutron scattering (SANS). The time resolved 1H NMR measurements allowed us to evaluate quantitatively the kinetics of the processes involved. The initiation event commences slowly and then progressively accelerates. This indicates an autocatalytic mechanism. The microstructure of the first monomer units attached is to a high extent 1,2. The disappearance of initiator --- at about 10% monomer conversion --- signals the onset of the normal ,6% vinyl content of the chain. Small angle neutron scattering was used to study the aggregation behavior of the carbon lithium head groups. It is well known that the polar head groups aggregate and form micellar structures. For dienes in non-polar solvents the textbook mechanism assumes the formation of only tetramers during the propagation reaction. By combining 1H NMR and SANS results we were able to determine quantitatively the aggregation number during all stages of the polymerization. Our measurements show the existence of large-scale structures during the initiation period. The initial degree of aggregation of more than 100 living polymer chains diminished as the polymerization progressed. In addition, even larger, giant structures with Nagg >>1000 and Rg , 1000Å were found. [source] The effect of temperature and lipid on the conformational transition of gramicidin A in lipid vesicles,BIOPOLYMERS, Issue 4 2005Ta-Hsien Lin Abstract The present study investigated the effect of temperature and lipid/peptide molar ratio on the conformational changes of the membrane peptide gramicidin A from a double-stranded helix to a single-stranded helical dimmer in 1,2-dimyristoyl-glycerol-3-phosphochloine (DMPC) vesicles. Tryptophan fluorescence spectroscopy results suggested that the conformational transition fitted a three-state (two-step) "folding" model. Rate constants, k1 and k2, were determined for each of the two steps. Since k1 and k2 increased with an increase in temperature, we hypothesized that the process corresponded to the breakage and formation of the backbone hydrogen bonds. The k1 was from 10 to 45 folds faster than k2, except for lipid/peptide molar ratios above 89.21, where k2 increased rapidly. At molar ratios below 89.21, k2 was insensitive to changes in lipid concentration. To account for this phenomenon, we proposed that while the driving interaction at high molar ratios is between the indole rings of the tryptophan residues and the lipid head groups, at low molar ratios there may be an intermolecular interaction between the tryptophan residues that causes gramicidin A to form an organized aggregated network. This aggregated network, caused by the tryptophan,tryptophan interaction, may be the main effect responsible for the slow down of the conformation change. © 2005 Wiley Periodicals, Inc. Biopolymers 78: 179,186, 2005 [source] Peptide conformational changes induced by tryptophan,phosphocholine interactions in a micelleBIOPOLYMERS, Issue 5 2002Jonathan W. Neidigh Abstract Sodium dodecylsulfate (SDS) and dodecylphosphocholine (DPC) micelles are often used to mimic the membrane- or receptor-bound states of peptides in NMR studies. From the present examination of a 26-residue analog of exendin-4 (TrEX4) by NMR and CD in water, aqueous 30% trifluoroethanol (TFE), and bound to both SDS and DPC micelles, it is clear that these two lipid micelles can yield very different peptide structures. The Trp-cage fold (also observed in 30% TFE) is present when TrEX4 is bound to SDS micelles; however, tertiary structure is absent in the presence of DPC micelles. The loss of tertiary structure is attributed to an energetically favorable interaction (estimated as 2,3 kcal/mol) of the tryptophan side chain with the phosphocholine head groups. These dramatic structural differences suggest that care must be taken when using either SDS or DPC to mimic the membrane- or receptor-bound states. © 2002 Wiley Periodicals, Inc. Biopolymers 65: 354,361, 2002 [source] |