Home About us Contact | |||
Head Distributions (head + distribution)
Selected AbstractsA two-dimensional analytical solution for groundwater flow in a leaky confined aquifer system near open tidal waterHYDROLOGICAL PROCESSES, Issue 4 2001Zhonghua Tang Abstract Groundwater in coastal areas is commonly disturbed by tidal fluctuations. A two-dimensional analytical solution is derived to describe the groundwater fluctuation in a leaky confined aquifer system near open tidal water under the assumption that the groundwater head in the confined aquifer fluctuates in response to sea tide whereas that of the overlying unconfined aquifer remains constant. The analytical solution presented here is an extension of the solution by Sun for two-dimensional groundwater flow in a confined aquifer and the solution by Jiao and Tang for one-dimensional groundwater flow in a leaky confined aquifer. The analytical solution is compared with a two-dimensional finite difference solution. On the basis of the analytical solution, the groundwater head distribution in a leaky confined aquifer in response to tidal boundaries is examined and the influence of leakage on groundwater fluctuation is discussed. Copyright © 2001 John Wiley & Sons, Ltd. [source] A novel analytical solution for constant-head test in a patchy aquiferINTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS, Issue 12 2006Shaw-Yang Yang Abstract A mathematical model describing the hydraulic head distribution for a constant-head test performed in a well situated at the centre of a patchy aquifer is presented. The analytical solution for the mathematical model is derived by the Laplace transforms and the Bromwich integral method. The solution for the hydraulic head has been shown to satisfy the governing equations, related boundary conditions, and continuity requirements for the hydraulic head and flow rate at the interface of the patch and outer regions. An efficient numerical approach is proposed to evaluate the solution, which has an integral covering an integration range from zero to infinity and an integrand consisting the product and square of the Bessel functions. This solution can be used to produce the curves of dimensionless hydraulic head against dimensionless time for investigating the effect of the contrast of formation properties on the dimensionless hydraulic head distribution. Define the ratio of outer-region transmissivity to patch-region transmissivity as ,. The dimensionless hydraulic head for ,=0.1 case is about 2.72 times to that for ,=10 case at dimensionless large time (e.g. ,,106) when the dimensionless distance (,) equals 10. The results indicate that the hydraulic head distribution highly depends on the hydraulic properties of two-zone formations. Copyright © 2006 John Wiley & Sons, Ltd. [source] IHMS,Integrated Hydrological Modelling System.HYDROLOGICAL PROCESSES, Issue 19 2010Part 2. Abstract The integrated hydrological modelling system, IHMS, has been described in detail in Part 1 of this paper. The system comprises three models: Distributed Catchment Scale Model (DiCaSM), MODFLOW (v96 and v2000) and SWI. The DiCaSM simulates different components of the unsaturated zone water balance, including groundwater recharge. The recharge output from DiCaSM is used as input to the saturated zone model MODFLOW, which subsequently calculates groundwater flows and head distributions. The main objectives of this paper are: (1) to show the way more accurate predictions of groundwater levels in two Cyprus catchments can be obtained using improved estimates of groundwater recharge from the catchment water balance, and (2) to demonstrate the interface utility that simulates communication between unsaturated and saturated zone models and allows the transmission of data between the two models at the required spatial and temporal scales. The linked models can be used to predict the impact of future climate change on surface and groundwater resources and to estimate the future water supply shortfall in the island up to 2050. The DiCaSM unsaturated zone model was successfully calibrated and validated against stream flows with reasonable values for goodness of fit as shown by the Nash-Sutcliffe criterion. Groundwater recharge obtained from the successful tests was applied at various spatial and temporal scales to the Kouris and Akrotiri catchments in Cyprus. These recharge values produced good estimates of groundwater levels in both catchments. Once calibrated, the model was run using a number of possible future climate change scenarios. The results showed that by 2050, groundwater and surface water supplies would decrease by 35% and 24% for Kouris and 20% and 17% for Akrotiri, respectively. The gap between water supply and demand showed a linear increase with time. The results suggest that IHMS can be used as an effective tool for water authorities and decision makers to help balance demand and supply on the island. Copyright © 2010 John Wiley & Sons, Ltd. [source] Semi-analytical solution for a slug test in partially penetrating wells including the effect of finite-thickness skinHYDROLOGICAL PROCESSES, Issue 18 2008Hund-Der Yeh Abstract This paper presents a new semi-analytical solution for a slug test in a well partially penetrating a confined aquifer, accounting for the skin effect. This solution is developed based on the solution for a constant-flux pumping test and a formula given by Peres and co-workers in 1989. The solution agrees with that of Cooper and co-workers and the KGS model when the well is fully penetrating. The present solution can be applied to simulate the temporal and spatial head distributions in both the skin and formation zones. It can also be used to demonstrate the influences of skin type or skin thickness on the well water level and to estimate the hydraulic parameters of the skin and formation zones using a least-squares approach. The results of this study indicate that the determination of hydraulic conductivity using a conventional slug-test data analysis that neglects the presence of a skin zone will give an incorrect result if the aquifer has a skin zone. Copyright © 2008 John Wiley & Sons, Ltd. [source] Retracted and replaced: A modelling study of hyporheic exchange pattern and the sequence, size, and spacing of stream bedforms in mountain stream networks, Oregon, USAHYDROLOGICAL PROCESSES, Issue 15 2005Michael N. Gooseff Abstract This article has been retracted and replaced. See Retraction and Replacement Notice DOI: 10.1002/hyp.6350 Studies of hyporheic exchange flows have identified physical features of channels that control exchange flow at the channel unit scale, namely slope breaks in the longitudinal profile of streams that generate subsurface head distributions. We recently completed a field study that suggested channel unit spacing in stream longitudinal profiles can be used to predict the spacing between zones of upwelling (flux of hyporheic water into the stream) and downwelling (flux of stream water into the hyporheic zone) in the beds of mountain streams. Here, we use two-dimensional groundwater flow and particle tracking models to simulate vertical and longitudinal hyporheic exchange along the longitudinal axis of stream flow in second-, third-, and fourth-order mountain stream reaches. Modelling allowed us to (1) represent visually the effect that the shape of the longitudinal profile has on the flow net beneath streambeds; (2) isolate channel unit sequence and spacing as individual factors controlling the depth that stream water penetrates the hyporheic zone and the length of upwelling and downwelling zones; (3) evaluate the degree to which the effects of regular patterns in bedform size and sequence are masked by irregularities in real streams. We simulated hyporheic exchange in two sets of idealized stream reaches and one set of observed stream reaches. Idealized profiles were constructed using regression equations relating channel form to basin area. The size and length of channel units (step size, pool length, etc.) increased with increasing stream order. Simulations of hyporheic exchange flows in these reaches suggested that upwelling lengths increased (from 2·7 m to 7·6 m), and downwelling lengths increased (from 2·9 m to 6·0 m) with increase in stream order from second to fourth order. Step spacing in the idealized reaches increased from 5·3 m to 13·7 m as stream size increased from second to fourth order. Simulated upwelling lengths increased from 4·3 m in second-order streams to 9·7 m in fourth-order streams with a POOL,RIFFLE,STEP channel unit sequence, and increased from 2·5 m to 6·1 m from second- to fourth-order streams with a POOL,STEP,RIFFLE channel unit sequence. Downwelling lengths also increased with stream order in these idealized channels. Our results suggest that channel unit spacing, size, and sequence are all important in determining hyporheic exchange patterns of upwelling and downwelling. Though irregularities in the size and spacing of bedforms caused flow nets to be much more complex in surveyed stream reaches than in idealized stream reaches, similar trends emerged relating the average geomorphic wavelength to the average hyporheic wavelength in both surveyed and idealized reaches. Copyright © 2005 John Wiley & Sons, Ltd. [source] |