Home About us Contact | |||
Head Coil (head + coil)
Selected AbstractsHigh-resolution MRI Enhances Identification of Lesions Amenable to Surgical Therapy in Children with Intractable EpilepsyEPILEPSIA, Issue 8 2004Monisha Goyal Summary:,Purpose: Many children with refractory epilepsy can achieve better seizure control with surgical therapy. An abnormality on magnetic resonance imaging (MRI), along with corroborating localization by other modalities, markedly increases chances of successful surgical outcome. We studied the impact of high-resolution MRI on the surgical outcome of intractable epilepsy. Methods: High-resolution MRI using four-coil phased surface array was obtained as part of the comprehensive presurgical protocol for children with focal onset intractable seizures evaluated by our epilepsy center during the first half of 2002. Results: Thirteen consecutive children, ages 5 to 18 years, entered this prospective study. For four patients with a lesion on a recent MRI examination with a standard head coil, management did not change with high-resolution MRI. Standard MRI in the other nine patients did not identify a lesion. However, high-resolution MRI with the phased-array surface coil found previously undiagnosed focal abnormalities in five of nine patients. These abnormalities included hippocampal dysplasia, hippocampal atrophy, and dual pathology with frontal cortical dysplasia. In four of nine patients, no identifiable lesion was identified on the high-resolution MRI. All patients underwent invasive monitoring. In three of five patients, newly diagnosed lesions correlated with EEG abnormalities, and resection was performed. Conclusions: In our center, high-resolution MRI identified lesions not detected by standard MRI in more than half the children (56%). Technical advances such as four-coil phased surface array MRI can help identify and better delineate lesions, improving the diagnosis of patients who are candidates for surgical treatment of refractory epilepsy. [source] Combination of multidimensional navigator echoes data from multielement RF coilMAGNETIC RESONANCE IN MEDICINE, Issue 4 2010Junmin Liu Abstract Until now, only one-dimensional navigator-echo techniques have been implemented with multielement RF coils. For the multidimensional navigator echoes, which extract six-degree of freedom motion information from the raw k-space data, an efficient raw data combination approach is needed. In this work, three combination approaches, including summation of the complex raw data, summation following phase alignment, and summation of the squares of the k-space magnitude profiles, were evaluated with the spherical navigator echoes (SNAV) technique. In vivo brain imaging experiments were used to quantify accuracy and precision and demonstrated that SNAVs acquired with an eight-channel head coil can determine the rotation and translation in range up to 10° and 20 mm with subdegree and submillimeter accuracy, respectively. Results from a 3D brain volume realignment experiment showed excellent agreement between baseline images and SNAV-aligned follow-up volumes. Magn Reson Med, 2010. © 2010 Wiley-Liss, Inc. [source] 96-Channel receive-only head coil for 3 Tesla: Design optimization and evaluationMAGNETIC RESONANCE IN MEDICINE, Issue 3 2009Graham C. Wiggins Abstract The benefits and challenges of highly parallel array coils for head imaging were investigated through the development of a 3T receive-only phased-array head coil with 96 receive elements constructed on a close-fitting helmet-shaped former. We evaluated several designs for the coil elements and matching circuitry, with particular attention to sources of signal-to-noise ratio (SNR) loss, including various sources of coil loading and coupling between the array elements. The SNR and noise amplification (g -factor) in accelerated imaging were quantitatively evaluated in phantom and human imaging and compared to a 32-channel array built on an identical helmet-shaped former and to a larger commercial 12-channel head coil. The 96-channel coil provided substantial SNR gains in the distal cortex compared to the 12- and 32-channel coils. The central SNR for the 96-channel coil was similar to the 32-channel coil for optimum SNR combination and 20% lower for root-sum-of-squares combination. There was a significant reduction in the maximum g -factor for 96 channels compared to 32; for example, the 96-channel maximum g -factor was 65% of the 32-channel value for acceleration rate 4. The performance of the array is demonstrated in highly accelerated brain images. Magn Reson Med, 2009. © 2009 Wiley-Liss, Inc. [source] High-field actively detuneable transverse electromagnetic (TEM) coil with low-bias voltage for high-power RF transmissionMAGNETIC RESONANCE IN MEDICINE, Issue 6 2007Nikolai I. Avdievich Abstract The design and construction of a 4T (170 MHz) transverse electromagnetic (TEM) actively detuneable quadrature head coil is described. Conventional schemes for active detuning require high negative bias voltages (>300 V) to prevent leakage of RF pulses with amplitudes of 1,2 kW. To extend the power handling capacity and avoid the use of high DC bias voltages, we developed an alternate method of detuning the volume coil. In this method the PIN diodes in the detuning circuits are shorted when the RF volume coil is tuned, and negatively biased with ,12 V when the coil is detuned. To preserve the high QU/QL ratio of the TEM coil, we modified the method of Nabetani and Watkins (Proceedings of the 13th Annual Meeting of ISMRM, Kyoto, Japan, 2004, abstract 1574) by utilizing a high-impedance (,200 ,), lumped-element, quarter-wavelength transformer. A QU of 500 was achieved for the detuneable TEM, such that incorporation of the detuning network had minimal effect (<1 dB) on the performance of the coil in vivo. Magn Reson Med 57:1190,1195, 2007. © 2007 Wiley-Liss, Inc. [source] 32-channel 3 Tesla receive-only phased-array head coil with soccer-ball element geometryMAGNETIC RESONANCE IN MEDICINE, Issue 1 2006G.C. Wiggins Abstract A 32-channel 3T receive-only phased-array head coil was developed for human brain imaging. The helmet-shaped array was designed to closely fit the head with individual overlapping circular elements arranged in patterns of hexagonal and pentagonal symmetry similar to that of a soccer ball. The signal-to-noise ratio (SNR) and noise amplification (g -factor) in accelerated imaging applications were quantitatively evaluated in phantom and human images and compared with commercially available head coils. The 32-channel coil showed SNR gains of up to 3.5-fold in the cortex and 1.4-fold in the corpus callosum compared to a (larger) commercial eight-channel head coil. The experimentally measured g -factor performance of the helmet array showed significant improvement compared to the eight-channel array (peak g -factor 59% and 26% of the eight-channel values for four- and fivefold acceleration). The performance of the arrays is demonstrated in high-resolution and highly accelerated brain images. Magn Reson Med, 2006. © 2006 Wiley-Liss, Inc. [source] Quantitative ASL muscle perfusion imaging using a FAIR-TrueFISP technique at 3.0,TNMR IN BIOMEDICINE, Issue 1 2006Andreas Boss Abstract The feasibility of muscle perfusion imaging with diagnostic image quality was demonstrated using the FAIR-TrueFISP arterial spin labeling technique on a clinical 3.0,T whole-body scanner. In eight healthy volunteers (24 to 42 years old), quantitative perfusion maps of the forearm musculature were acquired before and after intense exercise. All measurements were carried out in a 3.0,T whole-body MR unit in combination with an eight-channel head coil. Pulsed arterial spin labeling and data recording were performed with an adapted FAIR-TrueFISP technique and quantitative perfusion maps were calculated on a pixel-by-pixel basis by means of the extended Bloch equations. Perfusion images with an in-plane resolution of 1,mm showed no significant distortions or blurring. Perfusion,time curves could be recorded with a temporal resolution of 6.4,s. Maximum perfusion in the musculature was found ,2,min after exercise, reaching values of up to 220,mL/min per 100,g of tissue with good delineation between the active muscles and the musculature not involved in the exercise. In conclusion, the TrueFISP pulsed arterial spin labeling technique allows patient-friendly assessment of muscular perfusion in a clinical whole-body scanner. Copyright © 2006 John Wiley & Sons, Ltd. [source] 32-channel 3 Tesla receive-only phased-array head coil with soccer-ball element geometryMAGNETIC RESONANCE IN MEDICINE, Issue 1 2006G.C. Wiggins Abstract A 32-channel 3T receive-only phased-array head coil was developed for human brain imaging. The helmet-shaped array was designed to closely fit the head with individual overlapping circular elements arranged in patterns of hexagonal and pentagonal symmetry similar to that of a soccer ball. The signal-to-noise ratio (SNR) and noise amplification (g -factor) in accelerated imaging applications were quantitatively evaluated in phantom and human images and compared with commercially available head coils. The 32-channel coil showed SNR gains of up to 3.5-fold in the cortex and 1.4-fold in the corpus callosum compared to a (larger) commercial eight-channel head coil. The experimentally measured g -factor performance of the helmet array showed significant improvement compared to the eight-channel array (peak g -factor 59% and 26% of the eight-channel values for four- and fivefold acceleration). The performance of the arrays is demonstrated in high-resolution and highly accelerated brain images. Magn Reson Med, 2006. © 2006 Wiley-Liss, Inc. [source] |