Home About us Contact | |||
Heavy Metal Ions (heavy + metal_ion)
Selected AbstractsPeculiarities of Electrochemical Bismuth Film Formation in the Presence of Bromide and Heavy Metal IonsELECTROANALYSIS, Issue 15 2009Giedr, Grincien Abstract Bi films were deposited on glassy carbon electrode from solutions with and without KBr. The morphology of both types of the films was characterized by scanning electron microscopy (SEM), and their electrochemical behavior was studied by square wave (SWV) and cyclic voltammetry (CV). Bi films were also co-deposited with common analyte-heavy-metals in the presence of KBr and these films also were characterized by SEM, SWV and CV in order to understand the formation of the mixed metal films. All films studied had a different morphology. Bromide addition made the Bi films more compact and uniform, whereas Pb catalyzed Bi film deposition. [source] Electrochemical Investigation of Binding of Heavy Metal Ions to Turkish LignitesELECTROANALYSIS, Issue 16 2004Erol Pehlivan Abstract Adsorption and desorption of Cu2+, Pb2+, Cd2+, Ni2+ and Zn2+ ions on samples of lignites (young brown coal) from three areas in the vicinity of Konya (Anatolia, Turkey) were followed using the polarographic method of analysis. This method enables the determination of free metal ions in suspensions containing both small and colloidal particles of lignite. Effects of pH, nature of the metal ion, and origin of the lignite on its adsorption capacity were followed. Binding is only between 5 and 30% reversible, indicating that ion exchange is not the predominant factor. The role of the size and shape of cavities inside pulverized lignite and of the functional groups inside these cavities was considered. [source] A New Carrier for Selective Removal of Heavy Metal Ions from Aqueous Solutions through Bulk Liquid MembranesEUROPEAN JOURNAL OF ORGANIC CHEMISTRY, Issue 18 2004Nicoletta Spreti Abstract The carrier-mediated transport of heavy metal ions through bulk liquid membranes has been examined: toxic Hg2+, Cd2+ and Pb2+ ions were studied, along with Cu2+ ions for comparative purposes. The ability of a new carrier, 2,2,-bis(p -octyloxybenzyl)diethylenetriamine (bis- pODET), to complex and transport all the selected metal ions is reported. Differing affinities of the carrier for the different metal ions and the different experimental conditions required for their release into the receiving phase allowed the selective separation of equimolar binary mixtures. For Hg2+/Cd2+ and Hg2+/Pb2+ mixtures, two different separation methods were performed, while the inefficacy of the separation of Cd2+/Pb2+ and Hg2+/Cu2+ mixtures was for two different reasons: (i) the carrier is able to extract the metal ions with similar levels of ability, and (ii) the carrier metal ion complexes require the same acidity of the receiving phase to release the metal ions. The capability of the carrier to transport Hg2+ efficiently in consecutive cycles is also reported: over 90% of the metal ions were transferred into the receiving phase for three consecutive processes. (© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2004) [source] Carrier-Mediated Transport of Toxic Heavy Metal Ions in Bulk Liquid MembranesEUROPEAN JOURNAL OF ORGANIC CHEMISTRY, Issue 6 2004Lucia Brinchi Abstract Transport through a dichloromethane liquid membrane has been studied to investigate the ability of 1,1,7,7-tetraethyl-4-tetradecyldiethylenetriamine (TE14DT), previously tested for the transport of copper, to act as a carrier for toxic heavy metal ions such as Cd2+, Pb2+ and Hg2+. The carrier displayed a remarkable capability to extract all the metal ions from the source to the organic phases but only cadmium was efficiently transported across the membrane. The experimental conditions optimised for the transport of copper are inadequate for lead and mercury. In fact, the inefficacy of their transport could be due, as regards lead, to the slow diffusion of the complex through the membrane, while mercury remained in the organic phase because of the high stability of the mercury-carrier complex. Selectivity tests using binary mixtures of the metal ions showed TE14DT's capability to transport copper or cadmium also in the presence of lead in the source phase. (© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2004) [source] Stress-induced somatic embryogenesis in vegetative tissues of Arabidopsis thalianaTHE PLANT JOURNAL, Issue 1 2003Miho Ikeda-Iwai Summary Somatic embryogenesis is an obvious experimental evidence of totipotency, and is used as a model system for studying the mechanisms of de-differentiation and re-differentiation of plant cells. Although Arabidopsis is widely used as a model plant for genetic and molecular biological studies, there is no available tissue culture system for inducing somatic embryogenesis from somatic cells in this plant. We established a new tissue culture system using stress treatment to induce somatic embryogenesis in Arabidopsis. In this system, stress treatment induced formation of somatic embryos from shoot-apical-tip and floral-bud explants. The somatic embryos grew into young plantlets with normal morphology, including cotyledons, hypocotyls, and roots, and some embryo-specific genes (ABI3 and FUS3) were expressed in these embryos. Several stresses (osmotic, heavy metal ion, and dehydration stress) induced somatic embryogenesis, but the optimum stress treatment differed between different stressors. When we used mannitol to cause osmotic stress, the optimal conditions for somatic embryogenesis were 6,9 h of culture on solid B5 medium containing 0.7 m mannitol, after which the explants were transferred to B5 medium containing 2,4-dichlorophenoxyacetic acid (2,4-D, 4.5 µm), but no mannitol. Using this tissue culture system, we induced somatic embryogenesis in three major ecotypes of Arabidopsis thaliana, Ws, Col, and Ler. [source] Electrochemical Investigation of Heavy Metal Ion Transfer Across the Water/1,2-Dichloroethane Interface Assisted by 9-Ethyl-3-Carbazolecarboxaldehyde-ThiosemicarbazoneELECTROANALYSIS, Issue 12 2007Haluk Bingol Abstract The transfer of heavy metal ions across the polarized water/1,2-dichloroethane (1,2-DCE) interface assisted by 9-ethyl-3-carbazolecarboxaldehyde-thiosemicarbazone (ECCAT) in the 1,2-DCE phase has been studied by cyclic voltammetry. Voltammetric waves of Pb(II) and Cd(II) ions were reversible and quasi-reversible, respectively, whereas that of Hg(II) and Zn(II) ion were irreversible. The voltammogram of Cu(II) ion showed a two-step wave, however the nature of the transfer could not be satisfactorily evaluated by analyzing the cyclic voltammetric data. When Ni(II) and Co(II) was used no peak was visible under the experimental conditions used in this study. The dependence of the half-wave potentials of Pb(II) and Cd(II) ions on the ligand concentration reveals that their ion-transfer is assisted by the formation of 1:3 metal-ECCAT complex in 1,2-DCE. The over-all association constants of [Pb(ECCAT)3]2+ and [Cd(ECCAT)3]2+ complexes in DCE-phase have been determined to be log ,=14.03 and log ,=15.44, respectively. [source] Determination of Trace Amounts of Copper in Tap Water Samples with a Calix[4]arene Modified Carbon Paste Electrode by Differential Pulse Anodic Stripping VoltammetryELECTROANALYSIS, Issue 10 2007Çelik Canpolat Abstract A calix[4]arene modified carbon paste electrode was used for trace determination of copper. The study of the preconcentration of copper as well as the other heavy metal ions at the modified electrode, with subsequent measurement by differential pulse anodic stripping voltammetry (DPASV), indicates the efficient open-circuit accumulation of the analytes onto the electrode. Many parameters such as the composition of the paste, pH, preconcentration time and stirring rate influence the response of the measurement. The procedure was optimized for copper determination. For a 10-minute preconcentration time at pH,6.5,7.5, the detection limit (LOD) was 1.1,,g L,1. The optimized method was successfully applied to the determination of copper in tap water sample by means of standard addition procedure. The copper content of the sample was comparable with the result obtained with AAS method. [source] A Novel Al(III)-Selective Electrochemical Sensor Based on N,N,-Bis(salicylidene)-1,2-phenylenediamine ComplexesELECTROANALYSIS, Issue 16 2006B. Gholivand Abstract A polyvinylchloride membrane sensor based on N,N,-bis(salecylidene)-1,2-phenylenediamine (salophen) as membrane carrier was prepared and investigated as a Al3+ -selective electrode. The sensor exhibits a Nernstian response toward Al(III) over a wide concentration range (8.0×10,7,3.0×10,2,M), with a detection limit of 6.0×10,7,M. The potentiometric response of the sensor is independent of the pH of the test solution in the pH range 3.2,4.5. The electrode possesses advantages of very fast response and high selectivity for Al3+ in comparison with alkali, alkaline earth and some heavy metal ions. The sensor was used as an indicator electrode, in the potentiometric titration of aluminum ion and in determination of Al3+ contents in drug, water and waste water samples. [source] Asymmetrical Schiff Bases as Carriers in PVC Membrane Electrodes for Cadmium (II) IonsELECTROANALYSIS, Issue 8 2005Hossein Mashhadizadeh, Mohammad Abstract 5-[((4-Methyl phenyl) azo)- N -(6-amino-2-pyridin) salicylaldimine] (S1), and 5-[((4-methyl phenyl) azo)- N -(2-diamino-2-cyano-1-ethyl cyanide) salicylaldehyde] (S2) with N and O donor atoms are effective ionophores to make Cd2+ -selective membrane electrodes. The electrodes based on S1 and S2 exhibits a Nernstian or near-Nernstian response for cadmium ion over a wide concentration range 1.5×10,1,7.5×10,7 with a slope of 28 and 2.0×10,1,4.0×10,7 with a slope of 22, respectively. They have quick response and can be used for three or four months without any divergence in potential. The proposed sensors show fairly good selectivity over some alkali, alkaline earth, transition and heavy metal ions. The electrodes based on S1 and S2 can be used in the pH range 3.5,9. These electrodes were used as an indicator electrode in potentiometric titration of cadmium ion with EDTA and in the direct determination of cadmium ion in aqueous solutions. [source] Selective Electrochemical Analysis of Various Metal Ions at an EDTA Bonded Conducting Polymer Modified ElectrodeELECTROANALYSIS, Issue 16 2004Aminur Rahman Abstract An EDTA-bonded conducting polymer modified electrode was prepared and characterized by FT-IR. The modified electrode was used for the selective electrochemical analysis of various trace metal ions such as, Cu(II), Hg(II), Pb(II), Co(II), Ni(II), Fe(II), Cd(II), and Zn(II) at the different pHs by linear sweep and square wave voltammetry. Dynamic ranges were obtained using square wave voltammetry from 0.1,,M to 10.0,,M for Co(II), Ni(II), Cd(II), Fe(II), and Zn(II) and 0.5,nM to 20,nM for Cu(II), Hg(II), and Pb(II) after 10,min of preconcentration. The detection limits were determined to be 0.1,nM, 0.3,nM, 0.4,nM, 50.0,nM, 60.0,nM, 65.0,nM, 80.0,nM, and 90.0,nM for Cu(II), Hg(II), Pb(II), Co(II), Ni(II), Cd(II), Fe(II), and Zn(II), respectively. The technique offers an excellent way for the selective trace determination of various heavy metal ions in a solution. [source] Pseudomonas fluorescens' view of the periodic tableENVIRONMENTAL MICROBIOLOGY, Issue 1 2008Matthew L. Workentine Summary Growth in a biofilm modulates microbial metal susceptibility, sometimes increasing the ability of microorganisms to withstand toxic metal species by several orders of magnitude. In this study, a high-throughput metal toxicity screen was initiated with the aim of correlating biological toxicity data in planktonic and biofilm cells to the physiochemical properties of metal ions. To this end, Pseudomonas fluorescens ATCC 13525 was grown in the Calgary Biofilm Device (CBD) and biofilms and planktonic cells of this microorganism were exposed to gradient arrays of different metal ions. These arrays included 44 different metals with representative compounds that spanned every group of the periodic table (except for the halogens and noble gases). The minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC) and minimum biofilm eradication concentration (MBEC) values were obtained after exposing the biofilms to metal ions for 4 h. Using these values, metal ion toxicity was correlated to the following ion-specific physicochemical parameters: standard reduction-oxidation potential, electronegativity, the solubility product of the corresponding metal,sulfide complex, the Pearson softness index, electron density and the covalent index. When the ions were grouped according to outer shell electron structure, we found that heavy metal ions gave the strongest correlations to these parameters and were more toxic on average than the other classes of the ions. Correlations were different for biofilms than for planktonic cells, indicating that chemical mechanisms of metal ion toxicity differ between the two modes of growth. We suggest that biofilms can specifically counter the toxic effects of certain physicochemical parameters, which may contribute to the increased ability of biofilms to withstand metal toxicity. [source] Complexes of glutathione with heavy metal ions as a new biochemical marker of aquatic environment pollution,ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 3 2010Jiri Baloun Abstract Reduced glutathione (GSH) plays a number of key roles in many biochemical pathways. This peptide is highly reactive and forms conjugates with other molecules via its sulfhydryl moiety. The interactions of the common heavy metal pollutant Cd(II) with GSH were determined by using the Brdicka reaction to evaluate whether this technique would be suitable as a biomarker. After GSH interaction with Cd(II) ions, two characteristic changes in the measured voltammogram were observed: Cat2 signal height decreased, and a new signal called P1 was found. The observed signal probably relates to the formation of a GSH,heavy metal ion complex adsorbed on the surface of the working electrode. When the interaction of GSH with cisplatin was studied, the same characteristic changes in the voltammogram were observed, which confirmed our hypothesis. Moreover, changes in the height of P1 and Cat2 signals with increasing time of GSH interaction with Cd(II) ions and/or cisplatin were also investigated. Cat2 peak height decreased proportionally with increasing time of interaction. This decrease can be explained by shielding of free sulfhydryl moiety by heavy metal ions, so it cannot catalyze the evolution of hydrogen from the supporting electrolyte. In addition, we found that, with increasing time of the interaction, the P1 signal was enhanced and shifted to more positive potentials for both Cd(II) ions and cisplatin. Environ. Toxicol. Chem. 2010;29:497,500. © 2009 SETAC [source] A New Carrier for Selective Removal of Heavy Metal Ions from Aqueous Solutions through Bulk Liquid MembranesEUROPEAN JOURNAL OF ORGANIC CHEMISTRY, Issue 18 2004Nicoletta Spreti Abstract The carrier-mediated transport of heavy metal ions through bulk liquid membranes has been examined: toxic Hg2+, Cd2+ and Pb2+ ions were studied, along with Cu2+ ions for comparative purposes. The ability of a new carrier, 2,2,-bis(p -octyloxybenzyl)diethylenetriamine (bis- pODET), to complex and transport all the selected metal ions is reported. Differing affinities of the carrier for the different metal ions and the different experimental conditions required for their release into the receiving phase allowed the selective separation of equimolar binary mixtures. For Hg2+/Cd2+ and Hg2+/Pb2+ mixtures, two different separation methods were performed, while the inefficacy of the separation of Cd2+/Pb2+ and Hg2+/Cu2+ mixtures was for two different reasons: (i) the carrier is able to extract the metal ions with similar levels of ability, and (ii) the carrier metal ion complexes require the same acidity of the receiving phase to release the metal ions. The capability of the carrier to transport Hg2+ efficiently in consecutive cycles is also reported: over 90% of the metal ions were transferred into the receiving phase for three consecutive processes. (© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2004) [source] Carrier-Mediated Transport of Toxic Heavy Metal Ions in Bulk Liquid MembranesEUROPEAN JOURNAL OF ORGANIC CHEMISTRY, Issue 6 2004Lucia Brinchi Abstract Transport through a dichloromethane liquid membrane has been studied to investigate the ability of 1,1,7,7-tetraethyl-4-tetradecyldiethylenetriamine (TE14DT), previously tested for the transport of copper, to act as a carrier for toxic heavy metal ions such as Cd2+, Pb2+ and Hg2+. The carrier displayed a remarkable capability to extract all the metal ions from the source to the organic phases but only cadmium was efficiently transported across the membrane. The experimental conditions optimised for the transport of copper are inadequate for lead and mercury. In fact, the inefficacy of their transport could be due, as regards lead, to the slow diffusion of the complex through the membrane, while mercury remained in the organic phase because of the high stability of the mercury-carrier complex. Selectivity tests using binary mixtures of the metal ions showed TE14DT's capability to transport copper or cadmium also in the presence of lead in the source phase. (© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2004) [source] The SmtB/ArsR family of metalloregulatory transcriptional repressors: structural insights into prokaryotic metal resistanceFEMS MICROBIOLOGY REVIEWS, Issue 2-3 2003Laura S. Busenlehner Abstract The SmtB/ArsR family of prokaryotic metalloregulatory transcriptional repressors represses the expression of operons linked to stress-inducing concentrations of di- and multivalent heavy metal ions. Derepression results from direct binding of metal ions by these homodimeric ,metal sensor' proteins. An evolutionary analysis, coupled with comparative structural and spectroscopic studies of six SmtB/ArsR family members, suggests a unifying ,theme and variations' model, in which individual members have evolved distinct metal selectivity profiles by alteration of one or both of two structurally distinct metal coordination sites. These two metal sites are designated ,3N (or ,3) and ,5 (or ,5C), named for the location of the metal binding ligands within the known or predicted secondary structure of individual family members. The ,3N/,3 sensors, represented by Staphylococcus aureus pI258 CadC, Listeria monocytogenes CadC and Escherichia coli ArsR, form cysteine thiolate-rich coordination complexes (S3 or S4) with thiophilic heavy metal pollutants including Cd(II), Pb(II), Bi(III) and As(III) via inter-subunit coordination by ligands derived from the ,3 helix and the N-terminal ,arm' (CadCs) or from the ,3 helix only (ArsRs). The ,5/,5C sensors Synechococcus SmtB, Synechocystis ZiaR, S. aureus CzrA, and Mycobacterium tuberculosis NmtR form metal complexes with biologically required metal ions Zn(II), Co(II) and Ni(II) characterized by four or more coordination bonds to a mixture of histidine and carboxylate ligands derived from the C-terminal ,5 helices on opposite subunits. Direct binding of metal ions to either the ,3N or ,5 sites leads to strong, negative allosteric regulation of repressor operator/promoter binding affinity, consistent with a simple model for derepression. We hypothesize that distinct allosteric pathways for metal sensing have co-evolved with metal specificities of distinct ,3N and ,5 coordination complexes. [source] Smart Microcapsules Encapsulating Reconfigurable Carbon Nanotube CoresADVANCED FUNCTIONAL MATERIALS, Issue 5 2010Won San Choi Abstract The encapsulation of carbon nanotubes (CNTs) to form a reconfigurable conglomerate within iron oxide microcapsules is demonstrated. The individual CNTs conglomerate and form a core inside the capsule upon exposure to high temperature, while they scatter when subjected to mild sonication at low pH. The assembly/disassembly of CNTs within the capsule was reversible and could be repeated by alternate heating and sonication. Also, the fabrication protocol could be used for the generation of various multifunctional hollow structures. To test the feasibility of using the capsules in real applications, the capacity of the capsules as a heavy metal ion remover was explored. The resulting capsules showed an excellent ability to remove lead and chromium ions. In addition, desorption of the metal ions adsorbed on the CNTs could be induced by exposure to low pH. Thus, encapsulated CNTs might be a recyclable, environmentally friendly agent for the removal of heavy metal ions. [source] Metal ion-imprinted polymer microspheres derived from copper methacrylate for selective separation of heavy metal ionsJOURNAL OF APPLIED POLYMER SCIENCE, Issue 1 2008Anh Hoang Dam Abstract Microbeads of metal ion-imprinted polymers (MIIPs) were prepared by a novel precipitation polymerization technique, in which copper methacrylate monomer and ethylene glycol dimethacrylate crosslinker were copolymerized in a rotary evaporator. The prepared microbeads had mono- or narrow size dispersity, and their sizes increased from 1 to 4 ,m with decreasing solvent amount or increasing initiator concentration. The absorption capacity and selectivity of the imprinted polymer for copper ion were determined in the presence of various competitive metal ions. As results, adsorption equilibrium was quickly achieved in about 10 min with high absorbability (about 90%). The effects of pH, initial metallic ion concentration, and MIIP bead size on the absorption capacity were investigated. The Cu(II)-imprinted polymers exhibited extremely high selectivity, which was much higher than that of corresponding blank polymers. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2008 [source] Binding of several heavy metal ions by polyaspartyl polymers and their application to some Chinese herbal medicinesJOURNAL OF APPLIED POLYMER SCIENCE, Issue 4 2007Bo Sun Abstract Water-insoluble polyaspartyl polymers were synthesized by using water as medium instead of organic medium. Taking Ca2+ as a reference, the binding of several heavy-metal ions, including Pb2+, Cd2+, Hg2+, Cr3+, Cu2+, and Mn2+, by polyaspartyl polymers was studied. The experimental results revealed that polyaspartate is an excellent binding agent for the investigated heavy-metal ions. These cation ions were bound to polyaspartate polymer by the same mechanism as Pb2+, which can be explained by ion exchange model. Since polyaspartate has a protein-resembling structure that is sensitive to trace heavy metal, it was used to remove some trace heavy-metal elements in Chinese herbal medicines. It was found that polyaspartate material was an effective agent for the removal of Pb2+, Cd2+, and Hg2+ ions from glycyrrhizin, angelica, and gynostemma pentaphyllum. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007 [source] Impact of dissolved wastewater constituents on peroxidase-catalyzed treatment of phenolJOURNAL OF CHEMICAL TECHNOLOGY & BIOTECHNOLOGY, Issue 4 2002Monika Wagner Abstract The impact of dissolved wastewater constituents on the treatment of synthetic phenol solutions using horseradish peroxidase (HRP) and hydrogen peroxide was investigated under a variety of reaction conditions. The constituents studied included various inorganic salts, organic compounds and heavy metals. Higher H2O2 doses were required to treat phenol in the presence of sodium sulfite, thiosulfate and sulfide; however, enhanced levels of phenol conversion were achieved once sufficient H2O2 was supplied. Sulfide and cyanide inhibited phenol transformation. The inhibition of sulfide was overcome by supplying sufficient H2O2 to oxidize the sulfide to sulfur. However, increasing the H2O2 dose was ineffective in attempting to overcome the strong inhibiting effect of cyanide. Among the heavy metal ions tested, only Mn(II) substantially inhibited phenol removal when it was present at a concentration of 1,mmol,dm,3. The presence of inorganic salts including NaCl, CaCl2, MgCl2, NH4Cl and (NH4)2SO4 reduced phenol conversion as compared with the treatment in distilled-deionized water. This can be attributed to the increased ionic strength of the solution. © 2002 Society of Chemical Industry [source] Application of a carbon sorbent for the removal of cadmium and other heavy metal ions from aqueous solutionJOURNAL OF CHEMICAL TECHNOLOGY & BIOTECHNOLOGY, Issue 4 2002I El-Shafey Abstract Treatment of flax shive with sulfuric acid produces a carbonaceous material that has been used to remove metal ions from aqueous solution. Metal ions including Cd(II), Cu(II), Cr(III), Co(II), Ni(II), Zn(II) and Pb(II) have been investigated for kinetic behaviour and sorption capacities. These metal ions show fast sorption kinetics following a first order rate equation. Cadmium was chosen as representative of these metal ions and a detailed study was carried out. The effect of pH on sorption was studied and it was found that maximum uptake occurred above pH 3,7, sorption was accompanied by release of protons into the solution and a ratio of [H+] released to [Cd2+] sorbed of approximately 2 was found. The sorption capacity showed no significant increase with increase of temperature. The presence of other metal ions such as K+, Na+, Mg2+ and Ca2+ decreases the Cd(II) capacity, indicating competition for the ion exchange sites. Successive sorption of Cd(II) shows that the capacity exceeds the monolayer capacity calculated from the Langmuir equation. Column studies showed good performance over a total of seven cycles of loading/stripping. These studies indicate that the sorption mechanism for these metal ions is related to a reversible ion exchange process on the carbon surface. © 2002 Society of Chemical Industry [source] Comparison of metallothionein-overexpression with sentinel lymph node biopsy as prognostic factors in melanomaJOURNAL OF THE EUROPEAN ACADEMY OF DERMATOLOGY & VENEREOLOGY, Issue 5 2007G Weinlich Abstract Background, Metallothioneins (MT) are ubiquitous, intracellular small proteins with high affinity for heavy metal ions. Immunohistochemical MT overexpression in paraffin-embedded tissues of patients with primary melanoma is associated with poor prognosis. While sentinel lymph node (SLN) biopsy is an established surgical technique for high-risk melanoma patients with predictive value for progression, the benefit of this procedure for the individual patient's overall survival remains unclear. Aim and methods, We examined the role of MT overexpression in comparison with SLN biopsy in melanoma patients as a prognostic marker for progression and survival. One hundred and fifty-eight (158) patients underwent SLN biopsy due to high-risk melanoma. Primary melanoma specimens were investigated by using a monoclonal antibody against MT on routinely fixed, paraffin-embedded tissues. The patients were followed up (median 37 months); the data of disease free survival and overall survival were calculated with a broad panel of statistical analyses. Results, Twenty-eight (18%) out of 158 recruited melanoma patients developed metastases, 17 (11%) patients died due to widespread disease. Kaplan,Meier curves gave significant disadvantages for the MT-positive as well as the SLN-positive group for progression and survival. In the Fisher's exact test and Pearson's ,2 -test MT overexpression was highly significant for progression, whereas SLN biopsy failed significance. In univariate as well as multivariate Cox regression analysis MT overexpression proved an excellent marker for progression (P = 0.007 and P = 0.009), although the P -values for survival were not significant. In contrast, while in the univariate analysis SLN biopsy did not show significant results for progression it did for survival, and in the multivariate analysis reached a P -value < 0.05 for both measured endpoints. Conclusion, Results corroborate the validity of MT overexpression in primary melanoma as a useful prognostic marker in melanoma patients. Accuracy is comparable and to some degree supplementary to the results of SLN biopsy. [source] Thermostability of Lyocell Dopes Modified with Surface-Active AdditivesMACROMOLECULAR MATERIALS & ENGINEERING, Issue 8 2005Frank Wendler Abstract Summary: Cellulose/N -methylmorpholine- N -oxide monohydrate (NMMO) spinning solutions were modified with surface-active additives to yield Lyocell fibers with functional properties. Based on cellulose fibers, a new class of materials with tailored adsorption characteristics are produced. Activated charcoal and carbon black used as additives significantly affect the thermostability of the spinning solutions. Considering the degree of filling three general tendencies become evident. It is most obvious that the onset temperature of dope decomposition is shifted towards lower values accompanied by viscosity reduction after annealing at elevated temperatures and an enhanced formation of degradations products. Morpholine, N -methylmorpholine and formaldehyde as the main degradation products were detected in aqueous distillates by means of HPLC. To study the rate of by-product formation during preparation of the solution kinetic measurements were carried out. Thermal instabilities are not only initiated by heavy metal ions, especially Fe(II), but also by the particle size and porosity of the charcoal. The nano-scaled carbon black used causes autocatalytic reactions as revealed by calorimetric measurements. Relationships between amount of Acc versus onset temperature (Ton) and concentration of N -methylmorpholine. [source] Comparison of Structural and Chemical Properties of Black and Red Human Hair Melanosomes,PHOTOCHEMISTRY & PHOTOBIOLOGY, Issue 1 2005Yan Liu ABSTRACT Melanosomes in black and red human hair are isolated and characterized by various chemical and physical techniques. Different yields of 4-amino-hydroxyphenolanaline by HI hydrolysis (a marker for pheomelanin) and pyrrole-2,3,5-tricarboxylic acid by KMnO4/H+ oxidation (a marker for eumelanin) indicate that the melanosomes in black hair are eumelanosomes, whereas those in red hair are mainly pheomelanosomes. Atomic force microscopy reveals that eumelanosomes and pheomelanosomes have ellipsoidal and spherical shapes, respectively. Eumelanosomes maintain structural integrity upon extraction from the keratin matrix, whereas pheomelanosomes tend to fall apart. The black-hair eumelanosomes have an average of 14.6 ± 0.5% amino acids content, which is attributed to the internal proteins entrapped in the melanosomes granules. The red-hair melanosomes contain more than 44% of amino acid content even after extensive proteolytic digestion. This high content of amino acids and the poorly reserved integrity of red-hair melanosomes suggest that some proteins are possibly covalently bonded with the melanin constituents in addition to those that are entrapped inside the melanin species. Soluene solubilization assay indicates the absorbance of melanin per gram of sample, adjusted for the amino acid content, is a factor of 2.9 greater for the black-hair melanosomes than the red-hair melanosomes. Metal analysis reveals significant amounts of diverse heavy metal ions bound to the two types of melanosomes. The amount of Cu(II) and Zn(II) are similar but Fe(III) content is four times higher in the red-hair melanosomes. 13C solid-state nuclear magnetic resonance spectra and infrared spectra are presented and are shown to be powerful techniques for discerning differences in the amino acid contents, the 5,6-dihydroxyindole-2-carboxylic acid:5,6-dihydroxyindole ratio, and the degree of cross-linking in the pigment. Excellent agreement is observed between these spectral results and the chemical degradation data. [source] Spectroscopic and thermal studies of poly[(N -vinylimidazole)- co -(maleic acid)] hydrogel and its quaternized formPOLYMER INTERNATIONAL, Issue 4 2008Nursel Pekel Abstract BACKGROUND: In this study, poly[(N -vinylimidazole)- co -(maleic acid)] (poly(VIm/MA)) hydrogels were prepared by ,-irradiation of ternary mixtures of N -vinylimidazole,maleic acid,water using a 60Co ,-source. Spectroscopic and thermal analyses of these hydrogels as a function of protonation showed that the results are consistent with the existence of an H-bridged complex when the imidazole rings are partially protonated. Finally, the efficiency and binding trends of Cu2+, Co2+, Cd2+ and Pb2+ ions with both protonated and unprotonated poly(VIm/MA) hydrogels were determined. RESULTS: Gelation of 90% was reached at around 180 kGy dose at the end of irradiation. The poly(VIm/MA) hydrogels synthesized were further protonated in HCl solutions with different concentrations. Hydrogels originally showed 450% volumetric swelling; this ratio reached 1900% after protonation at pH = 5.0. Fourier transform infrared spectral changes in the +NH stretching region (3200,3600 and 1173 cm,1) and the ring mode deformation at 915 cm,1 are consistent with the formation of an H-bridged complex between the protonated and unprotonated imidazole rings upon partial protonation. Similar changes were obtained from NMR spectra of both the protonated and unprotonated forms of the hydrogels. CONCLUSION: Protonated and unprotonated hydrogels have been used in heavy metal ion adsorption studies for environmental purposes. Adsorption decreased with decreasing pH value due to the protonation of the VIm ring. The adsorption of Me2+ ions decreased in the order Cu2+ > Co2+ > Cd2+ > Pb2+, which is related to the complexation stability as well as the ionic radius of the metal ions. These results show that P(VIm/MA) hydrogels can be used efficiently to remove heavy metal ions from aqueous solutions. However, the protonated form is a bad choice for heavy metal ion adsorption due to electrostatic repulsion forces; it can nevertheless be assumed to be a good choice for anion adsorption from environmental waste water systems. Copyright © 2007 Society of Chemical Industry [source] Polyurethane and sulfonated polysulfone blend ultrafiltration membranes: II.POLYMER INTERNATIONAL, Issue 3 2003Application studies Abstract Ultrafiltration membranes are largely being applied for macromolecular and heavy metal ion separations from aqueous streams. Polyurethane- and sulfonated- polysulfone-based membranes prepared in the absence and presence of the polymeric additive, poly(ethylene glycol) 600, in various compositions, were subjected to the rejection of macromolecular proteins, such as bovine serum albumin, egg albumin, pepsin and trypsin. Toxic heavy metal ions such as Cu2+, Ni2+, Cd2+ and Zn2+ were subjected to rejection by the blend membranes by complexing them with a polymeric ligand, polyethyleneimine. The effects of polymer blend compositions and additive concentrations on the rejection and permeate flux of both proteins and metal ions are discussed. The rejection and permeate flux efficiencies of the blend membranes are compared with pure sulfonated polysulfone membranes. © 2003 Society of Chemical Industry [source] Preparation and adsorption of novel cellulosic fibers modified by , -cyclodextrinPOLYMERS FOR ADVANCED TECHNOLOGIES, Issue 4 2008Youyi Xia Abstract Novel cellulosic fibers modified by , -cyclodextrin (CFEC) were prepared for adsorption for heavy metal ions like copper (II) and organic dye like neutral red from their aqueous solutions. The modified cellulosic fibers gave higher copper ion adsorption, and showed copper ion uptake values of 6.24,mg/g at 293°C, as against no adsorption for unmodified cellulosic fibers. Adsorption isotherm model indicated the adsorption of the novel modified fibers for heavy metal ions best fitted for Langmiur model. The adsorption was an exothermic reaction, and the reaction caloric was 6.295,kJ/mol. Copper ions could form a 7:4 complex with , -cyclodextrin (, -CD). The novel modified cellulosic fibers could also form inclusion complexes with neutral red via , -CD molecules. In addition, it was found that the novel modified cellulosic fibers had nearly the same mechanical and thermal properties as the unmodified cellulosic fibers because the modification did not destroy the main chain of cellulose molecules. Copyright © 2008 John Wiley & Sons, Ltd. [source] TcYSL3, a member of the YSL gene family from the hyper-accumulator Thlaspi caerulescens, encodes a nicotianamine-Ni/Fe transporterTHE PLANT JOURNAL, Issue 1 2007Delphine Gendre Summary The two main features of plant hyper-accumulator species are the massive translocation of heavy metal ions to the aerial parts and their tolerance to such high metal concentrations. Recently, several lines of evidence have indicated a role for nicotianamine (NA) in metal homeostasis, through the chelation and transport of NA,metal complexes. The function of transport of NA,metal chelates, required for the loading and unloading of vessels, has been assigned to the Yellow Stripe 1 (YSL)-Like family of proteins. We have characterized three YSL genes in Thlaspi caerulescens in the context of hyper-accumulation. The three YSL genes are expressed at high rates compared with their Arabidopsis thaliana homologs but with distinct patterns. While TcYSL7 was highly expressed in the flowers, TcYSL5 was more highly expressed in the shoots, and the expression of TcYSL3 was equivalent in all the organs tested. In situ hybridizations have shown that TcYSL7 and TcYSL5 are expressed around the vasculature of the shoots and in the central cylinder in the roots. The exposure to heavy metals (Zn, Cd, Ni) does not affect the high and constitutive expression of the TcYSL genes. Finally, we have demonstrated by mutant yeast complementation and uptake measurements that TcYSL3 is an Fe/Ni,NA influx transporter. This work provides therefore molecular, histological and biochemical evidence supporting a role for YSL transporters in the overall scheme of NA and NA,metal, particularly NA,Ni, circulation in a metal hyper-accumulator plant. [source] Antagonist effect of flufenamic acid on TRPM2 cation channels activated by hydrogen peroxideCELL BIOCHEMISTRY AND FUNCTION, Issue 4 2007Mustafa Naz Abstract The melastatin-related transient receptor potential channel TRPM2 is a plasma membrane Ca2+ -permeable cation channel that is activated by hydrogen peroxide (H2O2) as a consequence of oxidative stress although the channel activation by H2O2 appears to represent a cell-specific process in cells with endogenous expression of TRPM2. Flufenamic acid (FA) is a non-steroidal anti-inflammatory compound. Whether H2O2 activates or FA inhibits TRPM2 channels in Chinese hamster ovary (CHO) cell is currently unknown. Due to lack of known antogonists of this channel, we demonstrate in CHO cells that FA inhibits TRPM2 activated by extracellular H2O2. CHO cells were transfected with cDNA coding for TRPM2. Cells were studied with the conventional whole-cell patch clamp technique. The intracellular solution used EDTA (10,mM) as chelator for Ca2+ and heavy metal ions. H2O2 (10,mM) and FA (0.1,mM) were applied extracellularly. Non-selective cation currents were consistently induced by H2O2. The time cause of H2O2 effects was characterized by a delay of 2,5,min and a slow current induction to reach a plateau. The H2O2 - induced inward current was effectively inhibited by 0.1,mM FA applied extracellularly. In conclusion, we have demonstrated that FA is an effective antogonist of TRPM2 channels and H2O2activated currents in CHO cells. FA in CHO cells may be considered, at best, a starting point for the development of TRPM2 channel blockers. Copyright © 2006 John Wiley & Sons, Ltd. [source] Sequestration of Heavy Metals from Water with Layered Metal SulfidesCHEMISTRY - A EUROPEAN JOURNAL, Issue 19 2009Manolis Abstract Extraordinarily effective heavy metal ion scavenger: We show here that the material K2xMnxSn3,xS6 (x=0.5,0.95) (KMS-1) overcomes the limitations of the known heavy metal ion sorbents, showing the capability to rapidly reduce the concentrations of Cd, Hg, and Pb ions well-below the legally acceptable levels for drinking water. KMS-1 is inexpensive, easily prepared in large quantities, and may play a role in addressing the global problem of water contamination with heavy metal ions. The paradigm of heavy metal ion absorption of KMS-1 is the ability to form very strong MS bonds. [source] Novel Pyrene-armed Calix[4]arenes through Triazole Connection: Ratiometric Fluorescent Chemosensor for Zn2+ and Promising Structure for Integrated Logic GatesCHINESE JOURNAL OF CHEMISTRY, Issue 8 2008Lin-Na ZHU Abstract Two novel pyrene-armed calix[4]arenes by triazole connection were synthesized using "click" chemistry. Compound 1 with two pyrene subunits appended to the lower rims of the calix[4]arene shows ratiometric fluorescence response toward Zn2+, and selective fluorescence quenching toward heavy metal ions such as Cu2+, Hg2+ and Pb2+; while compound 2 with one pyrene subunit exhibits significant fluorescence quenching toward Cu2+ and moderate quenching behaviour toward Hg2+. By utilizing the different fluorescence behavior of 1 toward Zn2+ and Cu2+, inhibition (INH) and not or (NOR) logic gates were established. [source] |