Home About us Contact | |||
Heating Mechanisms (heating + mechanism)
Selected AbstractsThe Selective Heating of Iron Nanoparticles in a Single-Mode Microwave for the Patterned Growths of Carbon Nanofibers and NanotubesADVANCED FUNCTIONAL MATERIALS, Issue 8 2009Tamara Druzhinina Abstract The fast and cheap synthesis of carbon nanotubes is addressed in a large number of recent publications. At the same time, microwave-assisted synthesis has also gained interest. Besides the fact that reaction kinetics can be positively influenced by the use of microwave irradiation and advanced reaction conditions can be applied, absorption of microwave radiation depends on the material properties, thus resulting in a selective heating mechanism. The selective heating process allows for locally created temperatures high enough to promote the growth of carbon nanofibers and nanotubes on patterned iron catalyst layers. The resulting fibers are micrometers long, and can be synthesized in short time scales of a few minutes, yielding dense films of carbon fibers with uniform height. Here, the selective heating of surface bound iron nanoparticles is investigated in more detail, and experimental evidence for this effect is provided by utilizing a self-assembled monolayer of n -octadecyltrichlorosilane, which acts as a sensitive indicator for locally elevated temperatures. Special emphasis is placed on the development of an improved and controllable experimental setup that permits the safe and fast fabrication of the desired carbon objects. [source] Feedback under the microscope , II.MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 4 2010Heating, gas uplift, mixing in the nearest cluster core ABSTRACT Using a combination of deep (574 ks) Chandra data, XMM,Newton high-resolution spectra and optical H,+[N ii] images, we study the nature and spatial distribution of the multi-phase plasma in M87. Our results provide direct observational evidence of ,radio-mode' active galactic nuclei (AGN) feedback in action, stripping the central galaxy of its lowest entropy gas and therefore preventing star formation. This low entropy gas was entrained with and uplifted by the buoyantly rising relativistic plasma, forming long ,arms'. A number of arguments suggest that these arms are oriented within 15°,30° of our line-of-sight. The mass of the uplifted gas in the arms is comparable to the gas mass in the approximately spherically symmetric 3.8 kpc core, demonstrating that the AGN has a profound effect on its immediate surroundings. The coolest X-ray emitting gas in M87 has a temperature of ,0.5 keV and is spatially coincident with H,+[N ii] nebulae, forming a multi-phase medium where the cooler gas phases are arranged in magnetized filaments. We place strong upper limits of 0.06 M, yr,1 (at 95 per cent confidence) on the amount of plasma cooling radiatively from 0.5 to 0.25 keV and show that a uniform, volume-averaged heating mechanism could not be preventing the cool gas from further cooling. All of the bright H, filaments in M87 appear in the downstream region of the <3 Myr old shock front, at smaller radii than ,0.6 arcmin. We suggest that shocks induce shearing around the filaments, thereby promoting mixing of the cold gas with the ambient hot intra-cluster medium (ICM) via instabilities. By bringing hot thermal particles into contact with the cool, line-emitting gas, mixing can supply the power and ionizing particles needed to explain the observed optical spectra. Furthermore, mixing of the coolest X-ray emitting plasma with the cold optical line-emitting filamentary gas promotes efficient conduction between the two phases, allowing non-radiative cooling which could explain the lack of X-ray gas with temperatures under 0.5 keV. [source] A review on microwave baking of foodsINTERNATIONAL JOURNAL OF FOOD SCIENCE & TECHNOLOGY, Issue 2 2001Gülüm Sumnu Summary Microwaves interact with polar molecules and charged particles of food to generate heat. There are differences between the heating mechanisms of microwave and conventional heating. The use of microwave heating has the advantage of saving energy and time, improving both nutritional quality and acceptability of some foods by consumers. Microwave ovens are successfully used both in homes and in the food service industry. However, there are still problems in perfecting microwave baking, therefore it is a popular research area. The main problems found to occur in microwave-baked food products are low volume, tough or firm texture, lack of browning and flavour development. Recent studies aim to improve the quality of microwave-baked products. This article reviews the basic principles of microwave baking, problems commonly occurring in microwave-baked products and finally studies published concerning microwave-baked products. [source] High resolution observations of white-light emissions from the opacity minimum during an X-class flareASTRONOMISCHE NACHRICHTEN, Issue 6 2010Y. Xu Abstract Using high cadence, high resolution near infrared (NIR) observations of the X10 white-light flare (WLF) on 2003 October 29, we investigated the evolution of the core-halo structure of white-light emission during the two-second period flare peak. We found that size and intensity of the halo remained almost constant in the range of 10 Mm2. However, the core area was very compact and expanded rapidly from about 1 Mm2 to 4 Mm2. At the same time, the total emission of the core increased nearly twenty times. This distinct behavior indicates that different heating mechanisms might be responsible for core and halo emissions. In addition to the temporal analysis, we compared the intensity enhancements of the flare core and halo. The result shows that the halo contrast increased by about 8% compared to the flare-quiet region, which could be explained by a combination of direct-heating and backwarming models (© 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source] Heating of the solar and stellar coronae: a reviewASTRONOMISCHE NACHRICHTEN, Issue 8 2007R. Erdélyi Abstract Despite great advances in observations and modelling, the problem of solar and stellar heating still remains one of the most challenging problems of space physics. To find a definite answer to what sort of mechanisms act to heat the plasma to a few million degrees requires a collaborative effort of small scales observations, large capacity numerical modelling and complicated theoretical approaches. A unique theory should incorporate aspects such as the generation of energy, its transport and dissipation. Up to now, the first two problems are rather clarified. However, the modality of transfer of magnetic or kinetic energy into heat is a question still awaiting for an answer. In the present paper we review the various popular heating mechanisms put forward in the existing extensive literature. The heating processes are, somewhat arbitrarily, classified as hydrodynamic, magnetohydrodynamic or kinetic based on the characteristics of the model medium. These mechanisms are further divided based on the time scales of the ultimate dissipation involved (i.e. AC and DC heating, turbulent heating). In particular, special attention is paid to discuss shock dissipation, mode coupling, resonant absorption, phase mixing, and, reconnection. Finally, we briefly review the various heating mechanisms proposed to heat other stars. (© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source] |