Home About us Contact | |||
Heat Pipe (heat + pipe)
Selected AbstractsStudy on heat transfer characteristics of reservoir embedded loop heat pipe (1st report, Influence of evaporator orientation against gravity and charged liquid weight on heat transfer characteristics)HEAT TRANSFER - ASIAN RESEARCH (FORMERLY HEAT TRANSFER-JAPANESE RESEARCH), Issue 3 2007Hiroaki Ishikawa Abstract High-powered satellites need larger heat rejection areas. A deployable radiator is one of the key technologies for a high-powered satellite bus. A Reservoir Embedded Loop Heat Pipe (RELHP) is a two-phase heat transfer device that constitutes a deployable radiator. RELHP has an evaporator core which is used as a liquid reservoir to enhance operational reliability. This paper presents the heat transport characteristics of a RELHP under changing evaporator orientation against gravity and charged ammonia weight by experiment and calculation. Liquid slug position in the reservoir has a great influence on heat transport characteristics, caused by changing heat transfer coefficients between returned liquid into the evaporator and vapor in the reservoir. © 2007 Wiley Periodicals, Inc. Heat Trans Asian Res, 36(3): 143, 157, 2007; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/htj.20150 [source] Analysis of flow and heat transfer in evaporator porous wicking structure of a flat heat pipeHEAT TRANSFER - ASIAN RESEARCH (FORMERLY HEAT TRANSFER-JAPANESE RESEARCH), Issue 2 2009Congxiang Hu Abstract With a specified pressure distribution, an analytical investigation was conducted to explore the flow and heat transfer characteristics in an evaporator porous wicking structure of a flat heat pipe. The boundary effect on the flow rate is more significant than the inertia, and both the boundary and inertia effects exert very little influence on fluid layer thickness and velocity distribution. The bottom of the porous layer is at a quite uniform temperature, and the heat flux is almost normal to the solid boundary. © 2008 Wiley Periodicals, Inc. Heat Trans Asian Res; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/htj.20237 [source] Study on heat transfer characteristics of reservoir embedded loop heat pipe (1st report, Influence of evaporator orientation against gravity and charged liquid weight on heat transfer characteristics)HEAT TRANSFER - ASIAN RESEARCH (FORMERLY HEAT TRANSFER-JAPANESE RESEARCH), Issue 3 2007Hiroaki Ishikawa Abstract High-powered satellites need larger heat rejection areas. A deployable radiator is one of the key technologies for a high-powered satellite bus. A Reservoir Embedded Loop Heat Pipe (RELHP) is a two-phase heat transfer device that constitutes a deployable radiator. RELHP has an evaporator core which is used as a liquid reservoir to enhance operational reliability. This paper presents the heat transport characteristics of a RELHP under changing evaporator orientation against gravity and charged ammonia weight by experiment and calculation. Liquid slug position in the reservoir has a great influence on heat transport characteristics, caused by changing heat transfer coefficients between returned liquid into the evaporator and vapor in the reservoir. © 2007 Wiley Periodicals, Inc. Heat Trans Asian Res, 36(3): 143, 157, 2007; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/htj.20150 [source] Analysis of the parameters of the sintered loop heat pipeHEAT TRANSFER - ASIAN RESEARCH (FORMERLY HEAT TRANSFER-JAPANESE RESEARCH), Issue 8 2004K.J. Zan Abstract The purpose of this paper is to establish an experimental formula for sintered dendritic nickel powder. For this reason, wick structures with different porosity ranging from 65 to 80% were fabricated by cold pressing sintering process at fixed porosity and their parameters that included porosity, pore radius, and permeability were also measured. According to both the capillary limitation and the present experimental formula of the sintered dendritic nickel powder, the wick structure parameters that would affect the heat transfer capacity of the loop heat pipe (LHP) were analyzed theoretically and then investigated experimentally. The results showed that there exists an optimal combination of wick structure parameters by which the performance of the LHP would achieve optimization. The maximum heat transfer capacity was up to 500 W and the thermal resistance was 0.12°C/W at the allowable working temperature 80°C. © 2004 Wiley Periodicals, Inc. Heat Trans Asian Res, 33(8): 515,526, 2004; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/htj.20034 [source] Comparative thermal performance evaluation of an active solar distillation systemINTERNATIONAL JOURNAL OF ENERGY RESEARCH, Issue 15 2007G. N. Tiwari Abstract In this paper, thermal models of all types of solar collector-integrated active solar stills are developed based on basic energy balance equations in terms of inner and outer glass temperatures. In this paper, hourly yield, hourly exergy efficiency, and hourly overall thermal efficiency of active solar stills are evaluated for 0.05 m water depth. All numerical computations had been performed for a typical day in the month of 07 December 2005 for the climatic conditions of New Delhi (28°35,N, 77°12,E, 216 m above MSL). The thermal model of flat-plate collector integrated with active solar still was validated using the experimental test set-up results. Total daily yield from active solar still integrated with evacuated tube collector with heat pipe is 4.24 kg m,2 day,1, maximum among all other types of active solar stills. Copyright © 2007 John Wiley & Sons, Ltd. [source] Influence of wick characteristics on heat pipe performanceINTERNATIONAL JOURNAL OF ENERGY RESEARCH, Issue 7 2006Misheck G. Mwaba Abstract The performance of a heat pipe depends on several factors, one of which is the nature of the wick structure. Optimization of heat pipe performance requires wick structures that can provide high capillary pressure, and yet still offer low resistance to fluid flow. The current level of technology being developed in our laboratory makes it possible to engineer desired wick structures both micro- and macroscopically, especially tailored to optimize heat pipe performance. In order to assist the fabrication of unique wick structure, the influence of wick structure characteristics on heat pipe performance is numerically investigated in this work. Numerical methods are an effective tool to significantly reduce the number of experimental trials. Comparisons are made between performances of heat pipe with different wick structures; coarse pore sizes, fine pore sizes and a composite comprised of coarse and fine pore sizes. Results indicate superior performance, with a factor of up to 2, for heat pipe with composite structure combining coarse/fine wick. Validation of the simulation result presented using experimental data is being carried out. Copyright © 2005 John Wiley & Sons, Ltd. [source] The effect of condenser heat transfer on the energy performance of a plate heat pipe solar collectorINTERNATIONAL JOURNAL OF ENERGY RESEARCH, Issue 10 2005Jorge Facão Abstract For a novel prototype solar collector, using a plate heat pipe, condenser heat transfer was analysed in detail. The condenser has the shape of a rectangular channel. Flow and heat transfer of water in the rectangular channel was modelled and the heat transfer coefficient assessed, using the Fluent code. Under typical operating conditions a mixed convection situation occurs. The channel is inclined and heating is through one wall only (upper channel surface). The range of temperature differences considered was similar to the one verified under real operating conditions, covering a wide range of Grashof numbers. Results showed that the Nusselt number is significantly higher than the one for forced convection in a rectangular channel with fully developed boundary layers. In order to enhance heat transfer, a modification to the rectangular channel was analysed, using baffles to improve flow distribution and increase velocity. The effect of this modification on collector energy performance (efficiency) was assessed. Copyright © 2005 John Wiley & Sons, Ltd. [source] Investigation into the performance of a micro gravitational heat pipe and a micro gravitational heat pipe with arteryINTERNATIONAL JOURNAL OF ENERGY RESEARCH, Issue 1 2003S.B. Riffat Abstract The performance of a normal micro gravitational heat pipe was investigated using the analytical and numerical models previously developed. An innovative structure of the heat pipe, i.e. the micro gravitational heat pipe with artery, was then proposed in an attempt to overcome some of the drawbacks of the normal pipe. The thermal behaviour of the new type of heat pipe was simulated, and this was compared with that of a normal micro heat pipe. A performance estimation of both pipes was carried out based on the simulation results. Copyright © 2002 John Wiley & Sons, Ltd. [source] |