Heat Balance (heat + balance)

Distribution by Scientific Domains


Selected Abstracts


Surface Heat Balance and Spatially Distributed Ablation Modelling at Koryto Glacier, Kamchatka Peninsula, Russia

GEOGRAFISKA ANNALER SERIES A: PHYSICAL GEOGRAPHY, Issue 4 2004
Keiko Konya
Abstract To investigate the characteristics of ablation at Koryto Glacier, a mountain glacier under maritime climate in Kamchatka Peninsula, Russia, we made field observations from August to early September 2000. At a site near the equilibrium line, the 31-day average net radiation, sensible heat flux, and latent heat flux were 43, 59 and 31 W,2, respectively. We developed a new distributed ablation model, which only needs measurements of air temperature and global radiation at one site. Hourly ablation rates at this site obtained by the energy balance method are related to measured air temperature and global radiation by linear multiple regression. A different set of multiple regression coefficients is fitted for snow and ice surfaces. Better estimates of ablation rate can be obtained by this approach than by other temperature index models. These equations are then applied to each grid cell of a digital elevation model to estimate spatially distributed hourly melt. Air temperature is extrapolated using a constant temperature lapse rate and global radiation is distributed considering topographic effects. The model enables us to calculate the hourly spatial distribution of ablation rates within the glacier area and could well provide a realistic simulation of ablation over the whole glacier. [source]


Geographic body size gradients in tropical regions: water deficit and anuran body size in the Brazilian Cerrado

ECOGRAPHY, Issue 4 2009
Miguel Á. Olalla-Tárraga
A recent interspecific study found Bergmann's size clines for Holarctic anurans and proposed an explanation based on heat balance to account for the pattern. However, this analysis was limited to cold temperate regions, and exploring the patterns in warmer tropical climates may reveal other factors that also influence anuran body size variation. We address this using a Cerrado anuran database. We examine the relationship between mean body size in a grid of 1° cells and environmental predictors and test the relative support for four hypotheses using an AIC-based model selection approach. Also, we considered three different amphibian phylogenies to partition the phylogenetic and specific components of the interspecific variation in body size using a method analogous to phylogenetic eigen vector regression (PVR). To consider the potential effects of spatial autocorrelation we use eigenvector-based spatial filters. We found the largest species inhabiting high water deficit areas in the northeast and the smallest in the wet southwest. Our results are consistent with the water availability hypothesis which, coupled with previous findings, suggests that the major determinant of interspecific body size variation in anurans switches from energy to water towards the equator. We propose that anuran body size gradients reflect effects of reduced surface to volume ratios in larger species to control both heat and water balance. [source]


Wide-area estimates of saltcedar (Tamarix spp.) evapotranspiration on the lower Colorado River measured by heat balance and remote sensing methods,,

ECOHYDROLOGY, Issue 1 2009
Pamela L. Nagler
Abstract In many places along the lower Colorado River, saltcedar (Tamarix spp) has replaced the native shrubs and trees, including arrowweed, mesquite, cottonwood and willows. Some have advocated that by removing saltcedar, we could save water and create environments more favourable to these native species. To test these assumptions we compared sap flux measurements of water used by native species in contrast to saltcedar, and compared soil salinity, ground water depth and soil moisture across a gradient of 200,1500 m from the river's edge on a floodplain terrace at Cibola National Wildlife Refuge (CNWR). We found that the fraction of land covered (fc) with vegetation in 2005,2007 was similar to that occupied by native vegetation in 1938 using satellite-derived estimates and reprocessed aerial photographs scaled to comparable spatial resolutions (3,4 m). We converted fc to estimates of leaf area index (LAI) through point sampling and destructive analyses (r2 = 0·82). Saltcedar LAI averaged 2·54 with an fc of 0·80, and reached a maximum of 3·7 with an fc of 0·95. The ranges in fc and LAI are similar to those reported for native vegetation elsewhere and from the 1938 photographs over the study site. On-site measurements of water use and soil and aquifer properties confirmed that although saltcedar grows in areas where salinity has increased much better than native shrubs and trees, rates of transpiration are similar. Annual water use over CNWR was about 1·15 m year,1. Copyright © 2008 John Wiley & Sons, Ltd. [source]


Metabolic Heat Production, Heat Loss and the Circadian Rhythm of Body Temperature in the Rat

EXPERIMENTAL PHYSIOLOGY, Issue 3 2003
Roberto Refinetti
Metabolic heat production (calculated from oxygen consumption), dry heat loss (measured in a calorimeter) and body temperature (measured by telemetry) were recorded simultaneously at 6 min intervals over five consecutive days in rats maintained in constant darkness. Robust circadian rhythmicity (confirmed by chi square periodogram analysis) was observed in all three variables. The rhythm of heat production was phase-advanced by about half an hour in relation to the body temperature rhythm, whereas the rhythm of heat loss was phase-delayed by about half an hour. The balance of heat production and heat loss exhibited a daily oscillation 180 deg out of phase with the oscillation in body temperature. Computations indicated that the amount of heat associated with the generation of the body temperature rhythm (1.6 kJ) corresponds to less than 1% of the total daily energy budget (172 kJ) in this species. Because of the small magnitude of the fraction of heat balance associated with the body temperature rhythm, it is likely that the daily oscillation in heat balance has a very slow effect on body temperature, thus accounting for the 180 deg phase difference between the rhythms of heat balance and body temperature. [source]


Water problems and hydrological research in the Yellow River and the Huai and Hai River basins of China

HYDROLOGICAL PROCESSES, Issue 12 2004
Changming Liu
Abstract This paper deals with hydrological research in regard to the water resources crisis in the vulnerable areas found in the northern part of China. This area includes three main river basins, namely the basins of the Yellow (Huang) River, the Hai River and the Huai River. Several water problems are becoming very severe. Among them, two are the most critical: the Yellow River has been drained dry in the main course of its lower reaches and along its major tributaries, and the groundwater table has rapidly declined in the floodplains of the three rivers' downstream areas. To counter the problems, particularly the critical issues mentioned above, hydrological research, which serves as the basis of water development and management, has been carried out in the last two decades. This paper addresses three basic scientific problems in North China, namely: (a) water consumption and the capacity for saving water; (b) the changes in hydrological processes and water resources caused by natural change and human activities; and (c) the ability to supply water resources and water safety in terms of both quantity and quality within a changing environment. However, opportunities and challenges for ameliorating the problems exist, and new ideas and methodology to solve the problems have been proposed, such as the interface process study on the interactions in the soil,root interface, the plant,atmosphere interface, the soil,atmosphere interface, and the interface of soil water and groundwater. In order to manage water resources in a sustainable manner, the study of water resources' renewal ability as affected by natural change and human activity is addressed from the viewpoint of both water quantity and quality, and their integration. To reduce the vulnerability of water resources in regional water management, a paradigm of sustainable water resources utilization is also proposed, using water,heat balance, water,salt balance, water,sediment balance, and water supply,demand balance. This approach may help reveal the basic problems and point to possible approaches to solving the water problems in North China in the 21st century. Copyright © 2004 John Wiley & Sons, Ltd. [source]


Finite volume method for simulation of extrusion processes

INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, Issue 4 2005
H. Ba
Abstract In this paper, the development of a finite volume method for prediction of plastic flow of metals during cold and hot extrusion processes is described. The method solves the equations governing mass, momentum and heat balance in their integral form, using discretization elements of an arbitrary polyhedral shape. Comparisons of the numerical and experimental results show a very good agreement, implying that the proposed numerical method can be used as a useful tool in designing extrusion processes. Copyright © 2005 John Wiley & Sons, Ltd. [source]


Design of mixed conducting ceramic membranes/reactors for the partial oxidation of methane to syngas

AICHE JOURNAL, Issue 10 2009
Xiaoyao Tan
Abstract The performance of mixed conducting ceramic membrane reactors for the partial oxidation of methane (POM) to syngas has been analyzed through a two-dimensional mathematical model, in which the material balance, the heat balance and the momentum balance for both the shell and the tube phase are taken into account. The modeling results indicate that the membrane reactors have many advantages over the conventional fixed bed reactors such as the higher CO selectivity and yield, the lower heating point and the lower pressure drop as well. When the methane feed is converted completely into product in the membrane reactors, temperature flying can take place, which may be restrained by increasing the feed flow rate or by lowering the operation temperature. The reaction capacity of the membrane reactor is mainly determined by the oxygen permeation rate rather than by the POM reaction rate on the catalyst. In order to improve the membrane reactor performance, reduction of mass transfer resistance in the catalyst bed is necessary. Using the smaller membrane tubes is an effective way to achieve a higher reaction capacity, but the pressure drop is a severe problem to be faced. The methane feed velocity for the operation of mixed conducting membrane reactors should be carefully regulated so as to obtain the maximum syngas yield, which can be estimated from their oxygen permeability. The mathematical model and the kinetic parameters have been validated by comparing modeling results with the experimental data for the La0.6Sr0.4Co0.2Fe0.8O3-, (LSCF) membrane reactor. © 2009 American Institute of Chemical Engineers AIChE J, 2009 [source]


A new heat balance for flow boiling

AICHE JOURNAL, Issue 8 2007
Francisco J. Collado
Abstract Recently, one of the authors suggested calculating void fraction, an essential element in thermal-hydraulics, working with the "thermodynamic" quality instead of the usual "flow" quality. However, the standard heat balance is currently stated as a function of the "flow" quality. Therefore, we should search a new energy balance between the mixture enthalpy, based on "thermodynamic" quality, and the absorbed heat. This work presents the results of such analysis based on accurate measurements of the axial profile of the cross-sectional average void fraction in the region of boiling with subcooling for water at medium and high pressures taken by Moscow Power Institute (MPI) and Argonne National Laboratory (ANL). As main results, we find that, under uniform heat flux, the mixture enthalpy suffers an abrupt reduction of its slope upon passing saturation point, and a new slip ratio could balance heat with such mixture enthalpy. © 2007 American Institute of Chemical Engineers AIChE J, 2007 [source]


Dryout phenomena in a three-phase fixed-bed reactor

AICHE JOURNAL, Issue 1 2003
Zhen-Min Cheng
Understanding the mechanism of liquid-phase evaporation in a three-phase fixed-bed reactor is of practical importance, because the reaction heat is usually 7,10 times the vaporization heat of the liquid components. Evaporation, especially the liquid dryout, can largely influence the reactor performance and even safety. To predict the vanishing condition of the liquid phase, Raoult's law was applied as a preliminary approach, with the liquid vanishing temperature defined based on a liquid flow rate of zero. While providing correct trends, Raoult's law exhibits some limitation in explaining the temperature profile in the reactor. To comprehensively understand the whole process of liquid evaporation, a set of experiments on inlet temperature, catalyst activity, liquid flow rate, gas flow rate, and operation pressure were carried out. A liquid-region length-predicting equation is suggested based on these experiments and the principle of heat balance. [source]


Reliability of a machine service life prediction in thermal diagnostic test

LUBRICATION SCIENCE, Issue 1 2007
L. Burstein
Abstract Reliability of the machine service life determined in a thermal diagnostic test is estimated in this investigation. The time dependence of a thermal diagnostic parameter, and the residual service life (RSL) predicted on its basis, are examined here with the aid of the Monte-Carlo simulation procedure. The relationships involved are derived from the machine heat balance under two approaches , short term (starting stage) and long term (service time). The diagnostic parameter considered is the temperature change rate during the short-term period. The constants in its expression are determined from experimental data obtained as an example on the gearboxes of three heavy portal cranes with different service times. The diagnostic parameter,time graph (long-term approach) derived from the data is used as reference for prediction of the RSL. The reference dependence obtained from theoretical values of the diagnostic parameter, and the RSL calculated from this dependence, were repeatedly varied, with a view to estimating the reliability of the prediction. The uniform and Weibull distributions were used for generating, respectively, the random fluctuations of the reference gearbox temperature and of the diagnostic parameter of the tested one. It is shown that in 95% of the cases the thermal method entails a two-sided error of at most 3.6%, and for the tested gearbox the discrepancy between the deterministic and simulated averages does not exceed 1.1%. Copyright © 2006 John Wiley & Sons, Ltd. [source]


Differences among forced-air warming systems with upper body blankets are small.

ACTA ANAESTHESIOLOGICA SCANDINAVICA, Issue 9 2003
A randomized trial for heat transfer in volunteers
Background:, Forced-air warming is known as an effective procedure in prevention and treatment of perioperative hypothermia. Significant differences have been described between forced-air warming systems in combination with full body blankets. We investigated four forced-air warming systems in combination with upper body blankets for existing differences in heat transfer. Methods:, After approval of the local Ethics Committee and written informed consent, four forced-air warming systems combined with upper body blankets were investigated in a randomized cross-over trial on six healthy volunteers: (1) BairHuggerÔ 505 and Upper Body Blanket 520, Augustine Medical; (2) ThermaCareÔ TC 3003, GaymarÔ and OptisanÔ Upper Body Blanket, Brinkhaus; (3) WarmAirÔ 134 and FilteredFlowÔ Upper Body Blanket, CSZ; and (4) WarmTouchÔ 5800 and CareDrapeÔ Upper Body Blanket, Mallinckrodt. Heat transfer from the blanket to the body surface was measured with 11 calibrated heat flux transducers (HFTs) with integrated thermistors on the upper body. Additionally, the blanket temperature was measured 1 cm above the HFT. After a preparation time of 60 min measurements were started for 20 min. Mean values were calculated over 20 min. The t -test for matched pairs with Bonferroni-Holm-correcture for multiple testing was used for statistical evaluation at a P -level of 0.05. The values are presented as mean±SD. Results:, The WarmTouchÔ blower with the CareDrapeÔ blanket obtained the best heat flux (17.0±3.5 W). The BairHuggerÔ system gave the lowest heat transfer (8.1±1.1 W). The heat transfer of the ThermaCareÔ system and WarmAirÔ systems were intermediate with 14.3±2.1 W and 11.3±1.0 W. Conclusions:, Based on an estimated heat loss from the covered area of 38 W the heat balance is changed by 46.1 W to 55 W by forced-air warming systems with upper body blankets. Although the differences in heat transfer are significant, the clinical relevance of this difference is small. [source]


The flow of energy through the earth's climate system

THE QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, Issue 603 2004
Kevin E. Trenberth
Abstract The primary driver of the climate system is the uneven distribution of incoming and outgoing radiation on earth. The incoming radiant energy is transformed into various forms (internal heat, potential energy, latent energy, and kinetic energy), moved around in various ways primarily by the atmosphere and oceans, stored and sequestered in the ocean, land, and ice components of the climate system, and ultimately radiated back to space as infrared radiation. The requirement for an equilibrium climate mandates a balance between the incoming and outgoing radiation, and further mandates that the flows of energy are systematic. These drive the weather systems in the atmosphere, currents in the ocean, and fundamentally determine the climate. Values are provided for the seasonal uptake and release of heat by the oceans that substantially moderate the climate in maritime regions. In the atmosphere, the poleward transports are brought about mainly by large-scale overturning, including the Hadley circulation in low latitudes, and baroclinic storms in the extratropics, but the seamless nature of the transports on about monthly time-scales indicates a fundamental link between the two rather different mechanisms. The flows of energy can be perturbed, causing climate change. This article provides an overview of the flows of energy, its transformations, transports, uptake, storage and release, and the processes involved. The focus is on the region 60°N to 60°S, and results are presented for the solstitial seasons and their differences to highlight the annual cycle. Challenges in better determining the surface heat balance and its changes with time are discussed. Copyright © 2004 Royal Meteorological Society [source]


Development of a large-scale biocalorimeter to monitor and control bioprocesses

BIOTECHNOLOGY & BIOENGINEERING, Issue 2 2002
D. Voisard
Abstract Calorimetry has shown real potential at bench-scale for chemical and biochemical processes. The aim of this work was therefore to scale-up the system by adaptation of a standard commercially available 300-L pilot-scale bioreactor. To achieve this, all heat flows entering or leaving the bioreactor were identified and the necessary instrumentation implemented to enable on-line monitoring and dynamic heat balance estimation. Providing that the signals are sufficiently precise, such a heat balance would enable calculation of the heat released or taken up during an operational (bio)process. Two electrical Wattmeters were developed, the first for determination of the power consumption by the stirrer motor and the second for determination of the power released by an internal calibration heater. Experiments were designed to optimize the temperature controller of the bioreactor such that it was sufficiently rapid so as to enable the heat accumulation terms to be neglected. Further calibration experiments were designed to correlate the measured stirring power to frictional heat losses of the stirrer into the reaction mass. This allows the quantitative measurement of all background heat flows and the on-line quantitative calculation of the (bio)process power. Three test fermentations were then performed with B. sphaericus 1593M, a spore-forming bacterium pathogenic to mosquitoes. A first batch culture was performed on a complex medium, to enable optimization of the calorimeter system. A second batch culture, on defined medium containing three carbon sources, was used to show the fast, accurate response of the heat signal and the ability to perfectly monitor the different growth phases associated with growth on mixed substrates, in particular when carbon sources became depleted. A maximum heat output of 1100 W was measured at the end of the log-phase. A fed-batch culture on the same defined medium was then carried out with the feed rate controlled as a function of the calorimeter signal. A maximum heat output of 2250 W was measured at the end of the first log-phase. This work demonstrates that real-time quantitative calorimetry is not only possible at pilot-scale, but could be readily applied at even larger scales. The technique requires simple, readily available devices for determination of the few necessary heat flows, making it a robust, cost-effective technique for process development and routine monitoring and control of production processes. © 2002 Wiley Periodicals, Inc. Biotechnol Bioeng 80: 125,138, 2002 [source]