Home About us Contact | |||
Heterozygous Mutations (heterozygous + mutation)
Kinds of Heterozygous Mutations Selected AbstractsCompound Heterozygous Mutations in the Vitamin D Receptor in a Patient With Hereditary 1,25-Dihydroxyvitamin D-Resistant Rickets With Alopecia,JOURNAL OF BONE AND MINERAL RESEARCH, Issue 4 2009Yulin Zhou Abstract Hereditary vitamin D-resistant rickets (HVDRR) is a rare recessive genetic disorder caused by mutations in the vitamin D receptor (VDR). In this study, we examined the VDR in a young girl with clinical features of HVDRR including rickets, hypophosphatemia, and elevated serum 1,25(OH)2D. The girl also had total alopecia. Two mutations were found in the VDR gene: a nonsense mutation (R30X) in the DNA-binding domain and a unique 3-bp in-frame deletion in exon 6 that deleted the codon for lysine at amino acid 246 (,K246). The child and her mother were both heterozygous for the 3-bp deletion, whereas the child and her father were both heterozygous for the R30X mutation. Fibroblasts from the patient were unresponsive to 1,25(OH)2D3 as shown by their failure to induce CYP24A1 gene expression, a marker of 1,25(OH)2D3 responsiveness. [3H]1,25(OH)2D3 binding and immunoblot analysis showed that the patient's cells expressed the VDR,K246 mutant protein; however, the amount of VDR,K246 mutant protein was significantly reduced compared with wildtype controls. In transactivation assays, the recreated VDR,K246 mutant was unresponsive to 1,25(OH)2D3. The ,K246 mutation abolished heterodimerization of the mutant VDR with RXR, and binding to the coactivators DRIP205 and SRC-1. However, the ,K246 mutation did not affect the interaction of the mutant VDR with the corepressor Hairless (HR). In summary, we describe a patient with compound heterozygous mutations in the VDR that results in HVDRR with alopecia. The R30X mutation truncates the VDR, whereas the ,K246 mutation prevents heterodimerization with RXR and disrupts coactivator interactions. [source] Quantification of sequence exchange events between PMS2 and PMS2CL provides a basis for improved mutation scanning of lynch syndrome patients,HUMAN MUTATION, Issue 5 2010Heleen M. van der Klift Abstract Heterozygous mutations in PMS2 are involved in Lynch syndrome, whereas biallelic mutations are found in Constitutional mismatch repair-deficiency syndrome patients. Mutation detection is complicated by the occurrence of sequence exchange events between the duplicated regions of PMS2 and PMS2CL. We investigated the frequency of such events with a nonspecific polymerase chain reaction (PCR) strategy, coamplifying both PMS2 and PMS2CL sequences. This allowed us to score ratios between gene and pseudogene-specific nucleotides at 29 PSV sites from exon 11 to the end of the gene. We found sequence transfer at all investigated PSVs from intron 12 to the 3, end of the gene in 4 to 52% of DNA samples. Overall, sequence exchange between PMS2 and PMS2CL was observed in 69% (83/120) of individuals. We demonstrate that mutation scanning with PMS2 -specific PCR primers and MLPA probes, designed on PSVs, in the 3, duplicated region is unreliable, and present an RNA-based mutation detection strategy to improve reliability. Using this strategy, we found 19 different putative pathogenic PMS2 mutations. Four of these (21%) are lying in the region with frequent sequence transfer and are missed or called incorrectly as homozygous with several PSV-based mutation detection methods. Hum Mutat 31:578,587, 2010. © 2010 Wiley-Liss, Inc. [source] Molecular Bases of Congenital Hypopigmentary Disorders in Humans and Oculocutaneous Albinism 1 in JapanPIGMENT CELL & MELANOMA RESEARCH, Issue 2000YASUSHI TOMITA The molecular bases of various types of congenital hypopigmentary disorders have been clarified in the past 10 years. Homozygous gene mutations of enzymes functional in melanogenesis such as tyrosinase, P protein and DHICA oxidase, result in oculocutaneous albinism (OCA) 1, OCA 2, and OCA 3, respectively. The genes responsible for Hermansky-Pudlak syndrome (HPS) and Chediak-Higashi syndrome (CHS) have also recently been isolated and cloned. The transcription factor paired box 3 (PAX3) works at the promoter region of the microphthalmia-associated transcription factor (MITF) gene, and the MITF transcription factor orders the expression of c-kit, which encodes the receptor for stem-cell factor, which in turn stimulates melanoblast migration from the neural tube to the skin in the embryo. Heterozygous mutations of PAX3, MITF, or c-kit genes induce Waardenburg syndrome (WS) 1/3, WS 2 or Piebaldism, respectively. A defect of endothelin-3 or the endothelin-B receptor produces WS 4. In our examination of 26 OCA 1 patients in Japan, all were found to have homozygous or heterozygous tyrosinase gene mutations at codons 77 or 310. Therefore, mutations at codons 77 and 310 are the major ones in Japanese patients with OCA 1. An autosomal dominant pigmentary disease of dyschromatosis symmetrica hereditaria (DSH) is well known in Japan, and is characterized by a mixture of hypo- and hyper-pigmented macules of various sizes on the backs of the hands and feet. The disease gene and its chromosomal localization have not been identified yet. Our trial of linkage analysis and positional cloning to determine the disease gene is presented. [source] Genetic variants of insulin receptor substrate-1 (IRS-1) in syndromes of severe insulin resistance.DIABETIC MEDICINE, Issue 10 2002Functional analysis of Ala513Pro, Gly1158Glu IRS- Abstract Aims To define further the role of IRS-1 mutations in human syndromes of severe insulin resistance. Methods The IRS-1 gene was scanned for mutations in 83 unrelated affected subjects and 47 unaffected individuals using fluorescent single-strand conformation polymorphism (fSSCP) analysis. A novel heterozygous mutation, Gly1158Glu, was found in one affected subject. Four and two subjects were heterozygous for the previously reported variants Gly972Arg and Ala513Pro, respectively. The previously identified variant Gly819Arg was found in one affected and one unaffected subject. While Gly972Arg has been described to alter the signalling properties of IRS-1, no functional studies of Ala513Pro or Gly1158Glu have been reported. Results Chinese hamster ovary (CHO) cells stably over-expressing the insulin receptor were transiently transfected with vectors expressing either wild-type, Glu1158 or Pro513 IRS-1. A modest increase in insulin-stimulated tyrosine phosphorylation of Glu1158 IRS-1 was observed. However, this did not result in any significant change in the association of Grb2 or the p85, subunit of PI3-kinase or of PI3-kinase activity. In parallel studies, the Pro513 IRS-1 variant was indistinguishable from wild-type IRS-1. Conclusions While subtle effects of these variants cannot be excluded in this system, it is unlikely that these variants are responsible for the extreme insulin resistance seen in the subjects harbouring them. Although IRS proteins play a central role in insulin signalling, functionally significant mutations in the IRS-1 gene are a rare cause of human syndromes of severe insulin resistance. [source] SAP-1 is a microvillus-specific protein tyrosine phosphatase that modulates intestinal tumorigenesisGENES TO CELLS, Issue 3 2009Hisanobu Sadakata SAP-1 (PTPRH) is a receptor-type protein tyrosine phosphatase (RPTP) with a single catalytic domain in its cytoplasmic region and fibronectin type III-like domains in its extracellular region. The cellular localization and biological functions of this RPTP have remained unknown, however. We now show that mouse SAP-1 mRNA is largely restricted to the gastrointestinal tract and that SAP-1 protein localizes to the microvilli of the brush border in gastrointestinal epithelial cells. The expression of SAP-1 in mouse intestine is minimal during embryonic development but increases markedly after birth. SAP-1-deficient mice manifested no marked changes in morphology of the intestinal epithelium. In contrast, SAP-1 ablation inhibited tumorigenesis in mice with a heterozygous mutation of the adenomatous polyposis coli gene. These results thus suggest that SAP-1 is a microvillus-specific RPTP that regulates intestinal tumorigenesis. [source] Classic and atypical fibrodysplasia ossificans progressiva (FOP) phenotypes are caused by mutations in the bone morphogenetic protein (BMP) type I receptor ACVR1,HUMAN MUTATION, Issue 3 2009Frederick S. Kaplan Abstract Fibrodysplasia ossificans progressiva (FOP) is an autosomal dominant human disorder of bone formation that causes developmental skeletal defects and extensive debilitating bone formation within soft connective tissues (heterotopic ossification) during childhood. All patients with classic clinical features of FOP (great toe malformations and progressive heterotopic ossification) have previously been found to carry the same heterozygous mutation (c.617G>A; p.R206H) in the glycine and serine residue (GS) activation domain of activin A type I receptor/activin-like kinase 2 (ACVR1/ALK2), a bone morphogenetic protein (BMP) type I receptor. Among patients with FOP-like heterotopic ossification and/or toe malformations, we identified patients with clinical features unusual for FOP. These atypical FOP patients form two classes: FOP-plus (classic defining features of FOP plus one or more atypical features) and FOP variants (major variations in one or both of the two classic defining features of FOP). All patients examined have heterozygous ACVR1 missense mutations in conserved amino acids. While the recurrent c.617G>A; p.R206H mutation was found in all cases of classic FOP and most cases of FOP-plus, novel ACVR1 mutations occur in the FOP variants and two cases of FOP-plus. Protein structure homology modeling predicts that each of the amino acid substitutions activates the ACVR1 protein to enhance receptor signaling. We observed genotype-phenotype correlation between some ACVR1 mutations and the age of onset of heterotopic ossification or on embryonic skeletal development. Hum Mutat 0, 1,12, 2008. © 2008 Wiley-Liss, Inc. [source] Mutations in the human ATP-binding cassette transporters ABCG5 and ABCG8 in sitosterolemiaHUMAN MUTATION, Issue 2 2002Susanne Heimer Abstract Phytosterolemia or Sitosterolemia is a rare autosomal recessive disorder characterized by highly elevated plasma levels of plant sterols and cholesterol as a consequence of hyperabsorption and impaired biliary secretion of sterols. The disease is caused by mutations in two half size ATP-binding cassette transporters, ABCG5 and ABCG8. We have analyzed the genomic sequence of ABCG5 and ABCG8 in five well-characterized patients with Sitosterolemia. In the first patient we found a heterozygous mutation in exon 8 of the ABCG5 gene leading to a premature termination of the protein (Arg408Ter). This German patient is the first European showing a mutation of the ABCG5 gene. In a second patient we found a novel heterozygous mutation in exon 5 of ABCG8 (c.584T>A; Leu195Gln). Both patients were heterozygous for the identified mutation, but no mutation could be identified on the other chromosome. In three further analyzed patients we found mutations in exons 7, 9 and 11 of the ABCG8 gene, respectively, of which two result in a premature termination signal for translation products. One of these patients was compound heterozygous (Trp361Ter and Arg412Ter), the other was homozygous for Trp361Ter. The third patient was homozygous for an amino acid exchange (Gly574Arg). In conclusion this report describes one novel mutation affecting a highly conserved amino acid and two previously identified mutations in the ABCG8 gene. In addition, we identified for the first time a mutation in the ABCG5 gene of a European Sitosterolemia patient. © 2002 Wiley-Liss, Inc. [source] Canine COL1A2 Mutation Resulting in C-Terminal Truncation of Pro-,2(I) and Severe Osteogenesis ImperfectaJOURNAL OF BONE AND MINERAL RESEARCH, Issue 6 2001Bonnie G. Campbell Abstract RNA and type I collagen were analyzed from cultured skin fibroblasts of a Beagle puppy with fractures consistent with type III osteogenesis imperfecta (OI). In a nonisotopic RNAse cleavage assay (NIRCA), the proband's RNA had a unique cleavage pattern in the region of COL1A2 encoding the C-propeptide. DNA sequence analyses identified a mutation in which nucleotides 3991-3994 ("CTAG") were replaced with "TGTCATTGG." The first seven bases of the inserted sequence were identical to nucleotides 4002-4008 of the normal canine COL1A2 sequence. The resulting frameshift changed 30 amino acids and introduced a premature stop codon. Reverse-transcription polymerase chain reaction (RT-PCR) with primers flanking the mutation site amplified two complementary DNA (cDNA) fragments for the proband and a single product for the control. Restriction enzyme digestions also were consistent with a heterozygous mutation in the proband. Type I procollagen labeled with [3H]proline was analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Increased density of pC-,2(I) suggested comigration with the similarly sized pro-,2(I) derived from the mutant allele. Furthermore, ,-chains were overhydroxylated and the ratio of ,1(I):,2(I) was 3.2:1, consistent with the presence of ,1(I) homotrimers. Analyses of COL1A2 and type I collagen were both consistent with the described heterozygous mutation affecting the pro-,2(I) C-propeptide and confirmed a diagnosis of OI. [source] A novel compound heterozygous mutation in the F13A gene causing hereditary factor XIII deficiency in a Chinese familyJOURNAL OF THROMBOSIS AND HAEMOSTASIS, Issue 1 2006S. WU No abstract is available for this article. [source] Hypophosphatasia: molecular testing of 19 prenatal cases and discussion about genetic counseling,PRENATAL DIAGNOSIS, Issue 11 2008Brigitte Simon-Bouy Abstract Objective We studied hypophosphatasia (HP) mutations in 19 cases prenatally detected by ultrasonography without familial history of HP. We correlated the mutations with the reported ultrasound signs, and discussed genetic counseling with regard to the particular dominantly inherited prenatal benign form of HP. Method The coding sequence of the tissue nonspecific alkaline phosphatase (TNSALP) gene was analyzed by DNA sequencing, and 3D modeling was used to locate the mutated amino acids with regard to the functional domains of TNSALP. Results Although reported ultrasound signs were heterogeneous, two mutated alleles were found in 18 of the 19 cases studied, indicating recessive transmission of the disease. Functional domains of TNSALP were affected by 74% of missense mutations. In all the cases, including one with only a heterozygous mutation, molecular, biological, and familial data do not corroborate the hypothesis of prenatal benign HP. The mutation c.1133A > T observed in the prenatal benign form of HP and common in USA was not found in this series. Conclusion The results point out the prenatally detectable allelic heterogeneity of HP. The nature of the detected mutations and the evidence of recessive inheritance do not support these cases being affected with prenatal benign HP. Copyright © 2008 John Wiley & Sons, Ltd. [source] Brief Communication: Successful Isolated Liver Transplantation in a Child with Atypical Hemolytic Uremic Syndrome and a Mutation in Complement Factor HAMERICAN JOURNAL OF TRANSPLANTATION, Issue 9 2010W. Haller A male infant was diagnosed with atypical hemolytic uremic syndrome (aHUS) at the age of 5.5 months. Sequencing of the gene (CFH) encoding complement factor H revealed a heterozygous mutation (c.3644G>A, p.Arg1215Gln). Despite maintenance plasmapheresis he developed recurrent episodes of aHUS and vascular access complications while maintaining stable renal function. At the age of 5 years he received an isolated split liver graft following a previously established protocol using pretransplant plasma exchange (PE) and intratransplant plasma infusion. Graft function, renal function and disease remission are preserved 2 years after transplantation. Preemptive liver transplantation prior to the development of end stage renal disease is a valuable option in the management of aHUS associated with CFH mutations. [source] Successful Renal Transplantation in a Patient with Atypical Hemolytic Uremic Syndrome Carrying Mutations in Both Factor I and MCPAMERICAN JOURNAL OF TRANSPLANTATION, Issue 6 2009J. M. Cruzado Kidney transplantation in patients with atypical hemolytic uremic syndrome (aHUS) carrying mutations in the soluble complement regulators factor H (CFH) or factor I (CFI) is associated with elevated risk of disease recurrence and almost certain graft loss. In contrast, recurrence is unusual in patients with mutations in the membrane-associated complement regulator membrane cofactor protein (MCP) (CD46). Therefore, a panel of experts recently recommended the combined liver,kidney transplantation to minimize aHUS recurrence in patients with mutations in CFH or CFI. There was, however, very limited information regarding transplantation in patients carrying mutations in both soluble and membrane-associated complement regulators to support a recommendation. Here, we report the case of an aHUS patient with a heterozygous mutation in both CFI and MCP who received an isolated kidney transplant expressing normal MCP levels. Critically, the patient suffered from a severe antibody-mediated rejection that was successfully treated with plasmapheresis and IvIgG. Most important, despite the complement activation in the allograft, there was no evidence of thrombotic microangiopathy, suggesting that the normal MCP levels in the grafted kidney were sufficient to prevent the aHUS recurrence. Our results suggest that isolated kidney transplantation may be a good first option for care in aHUS patients carrying CFI/MCP combined heterozygous mutations. [source] Epidemiological Approach to Identifying Genetic Predispositions for Atypical Hemolytic Uremic SyndromeANNALS OF HUMAN GENETICS, Issue 1 2010Maren Sullivan Summary Atypical hemolytic uremic syndrome (aHUS) is caused by several susceptibility genes. A registry including analyses of susceptibility genes, familial occurrence and genotype-phenotype correlation should provide classification insights. Registry data of 187 unrelated index patients included age at onset, gender, family history, relapse of aHUS and potentially triggering conditions. Mutation analyses were performed in the genes CFH, CD46 and CFI and in the six potential susceptibility genes, FHR1 to FHR5 and C4BP. Germline mutations were identified in 17% of the index cases; 12% in CFH, 3% in CD46 and 2% in CFI. Twenty-nine patients had heterozygous mutations and one each had a homozygous and compound heterozygous mutation. Mutations were not found in the genes FHR1-5 and C4BP. In 40% of the patients with familial HUS a mutation was found. Penetrance by age 45 was 50% among carriers of any mutation including results of relatives of mutation-positive index cases. The only risk factor for a mutation was family history of HUS (p = 0.02). Penetrance of aHUS in carriers of mutations is not complete. Occurrence of homo- and heterozygous mutations in the same gene suggests that the number of necessary DNA variants remains unclear. Among clinical information only familial occurrence predicts a mutation. [source] How much phenotypic variation can be attributed to parkin genotype?ANNALS OF NEUROLOGY, Issue 2 2003Ebba Lohmann MD To establish phenotype,genotype correlations in early-onset parkinsonism, we have compared the phenotype of a large series of 146 patients with and 250 patients without parkin mutations. Although no single sign distinguished the groups, patients with mutations had significantly earlier and more symmetrical onset, dystonia more often at onset and hyperreflexia, slower progression of the disease, and a tendency toward a greater response to levodopa despite lower doses. After forward stepwise multiple logistic regression analysis, dystonia at onset and brisk reflexes were not longer significantly different but were correlated with age at onset rather than the presence of the parkin mutation. Age at onset in carriers of parkin mutations varied as did the rate of progression of the disease: the younger the age at onset the slower the evolution. The genotype influenced the phenotype: carriers of at least one missense mutation had a higher United Parkinson's Disease Rating Scale motor score than those carrying two truncating mutations. The localization of the mutations was also important because missense mutations in functional domains of parkin resulted in earlier onset. Patients with a single heterozygous mutation had significantly later and more asymmetrical onset and more frequent levodopa-induced fluctuations and dystonia than patients with two mutations. Ann Neurol 2003 [source] Neonatal hyperinsulinaemic hypoglycaemia and monogenic diabetes due to a heterozygous mutation of the HNF4A geneAUSTRALIAN AND NEW ZEALAND JOURNAL OF OBSTETRICS AND GYNAECOLOGY, Issue 3 2009Jennifer J. CONN Recent research has demonstrated that mutations of the hepatocyte nuclear factor 4-alpha (HNF4A) gene are associated with neonatal hyperinsulinaemic hypoglycaemia. Mutations of this gene also cause one of the subtypes of monogenic diabetes, a form of diabetes formerly known as maturity-onset diabetes of the young. This article describes a family discovered to have a novel frame-shift mutation of the HNF4A gene in the setting of early-onset maternal diabetes and severe neonatal hyperinsulinaemic hypoglycaemia. The implications of a diagnosis of HNF4A gene mutation for obstetric and paediatric practice are discussed. [source] Incorporation of fibrin molecules containing fibrinopeptide A alters clot ultrastructure and decreases permeabilityBRITISH JOURNAL OF HAEMATOLOGY, Issue 1 2007Veronica H. Flood Summary Previous studies have shown that a heterozygous mutation in the fibrinogen A, chain gene, which results in an A, R16C substitution, causes fibrinolytic resistance in the fibrin clot. This mutation prevents thrombin cleavage of fibrinopeptide A from mutant A, R16C chains, but not from wild-type A, chains. However, the mechanism underlying the fibrinolytic resistance is unclear. Therefore, this study investigated the biophysical properties of the mutant fibrin that contribute to fibrinolytic resistance. Fibrin clots made from the mutant fibrinogen incorporated molecules containing fibrinopeptide A into the polymerised clot, which resulted in a ,spiky' clot ultrastructure with barbed fibrin strands. The clots were less stiff than normal fibrin and were cross-linked slower by activated FXIII, but had an increased average fiber diameter, were more dense, had smaller pores and were less permeable. Protein sequencing showed that unclottable fibrinogen remaining in the supernatant consisted entirely of homodimeric A, R16C fibrinogen, whereas both cleaved wild-type , chains and uncleaved A, R16C chains were in the fibrin clot. Therefore, fibrinolytic resistance of the mutant clots is probably a result of altered clot ultrastructure caused by the incorporation of fibrin molecules containing fibrinopeptide A, resulting in larger diameter fibers and decreased permeability to fibrinolytic enzymes. [source] Ataxia with vitamin E deficiency in southeast Norway, case reportACTA NEUROLOGICA SCANDINAVICA, Issue 2009J. Koht Background,, Ataxia with vitamin E deficiency (AVED) is a rare cause of hereditary ataxia in north European countries with unknown prevalence. Few cases are reported from these countries. Methods ,Through a systematic population based study of hereditary ataxia in southeast Norway subjects were classified and investigated. Aims , To report a subject with ataxia due to vitamin E deficiency in Norway. Results , One patient with AVED was identified. The subject was a 45 years old woman with progressive ataxia from preschool age. When she was 12 years old Friedreich's ataxia was diagnosed after neurological examination. At the age of 45 re-evaluation and re-examination was performed and genetic analysis of the Frataxin gene was negative. At that time she had truncal and extremities ataxia, titubation of the head, pes cavus, inverted plantar response, loss of proprioceptive and vibration sense and a severe sensory neuropathy. Vitamin E in serum was undetectable and genetic analysis detected a compound heterozygous mutation, p.A120T and p.R134X, in the ,-tocopherol transport protein gene on chromosome 8q13. Discussion , Vitamin E should always be assessed in progressive ataxia of genetic or unexplained causes and especially with a Friedreich's ataxia-like phenotype since treatment is available. Conclusion,, AVED is rare in Norway, but exists, and we here report the first genetically confirmed subject with ataxia due to vitamin E deficiency in Norway. [source] TGFBI gene mutations in Hungary , polymorphic corneal amyloidosis caused by the novel F547S mutationACTA OPHTHALMOLOGICA, Issue 2009A BERTA Purpose To identify mutations in the Transforming Growth Factor Beta Induced (TGFBI) gene in Hungarian patients with corneal dystrophy and to characterize their histological features. Methods Exons of TGFBI gene were sequenced in 38 members of 15 unrelated families with corneal dystrophy. Exon 12 was sequenced in 100 healthy controls. Immunohistological analysis of corneal buttons excised during penetrating keratoplasty was performed. Results Molecular genetic analysis revealed a heterozygous R124C mutation in 18 patients with lattice type I dystrophy. A R555W heterozygous mutation was detected in five patients with granular Groenouw type I corneal dystrophy and the R555Q heterozygous mutation was found in four patients clinically diagnosed with Reis-Bücklers (one patient) and Thiel-Behnke (three patients) dystrophy. Three patients with "atypical granular" dystrophy later diagnosed as Avellino dystrophy were heterozygous for the R124H mutation. No other than the novel heterozygous T1640C mutation causing the F547S amino acid exchange was detected in a patient with polymorphic corneal amyloidosis. The mutation could not be found in healthy controls. Immunohistochemistry showed the presence of BIGH3 protein deposits in all examined corneal buttons. Electron microscopy confirmed the presence of amyloid fibrils in the case of the novel mutation. Conclusion Our results indicate that molecular genetic analysis is required to confirm the diagnosis of corneal dystrophies. We report the first cases of Avellino dystrophy from Central-Eastern Europe. The novel F547S mutation causes polymorphic corneal amyloidosis. [source] A novel mutation of the WRN gene in a Chinese patient with Werner syndromeCLINICAL & EXPERIMENTAL DERMATOLOGY, Issue 3 2008N. Zhao Summary Werner syndrome (WS) is an autosomal recessive inherited disease characterized by features of premature ageing. It is caused by mutations of the WRN gene encoding a protein with both exonuclease and helicase activities. The aim of this study was to identify gene mutations in a Chinese patient with WS. A 31-year-old Chinese man with typical features of WS was diagnosed as having probable WS. We performed PCR to scan 33 exons of the WRN gene of the patient, six members of his family, and 50 unrelated controls. Automated DNA sequencing identified the mutation in the patient as 3250delG. The proband's parents, son, younger brother and paternal grandmother were heterozygous. We did not find this heterozygous mutation in the proband's maternal grandmother or in any of 50 normal controls. The novel mutation in the WRN gene is responsible for the pathogenesis of WS and genetic detection is a useful method to confirm the diagnosis. [source] Neonatal severe hyperparathyroidism associated with a novel de novo heterozygous R551K inactivating mutation and a heterozygous A986S polymorphism of the calcium-sensing receptor geneCLINICAL ENDOCRINOLOGY, Issue 3 2007Judit Tõke Summary Introduction, Neonatal severe hyperparathyroidism (NSHPT) is induced by inactivating mutations of human calcium-sensing receptor (CaSR). Only three heterozygous de novo inactivating mutations of CaSR causing NSHPT have been described. We report the case of a now 11-year-old boy with NSHPT and we characterize a novel inactivating mutation along with the results of some functional analyses. Patient and methods, As a neonate the patient presented the clinical syndrome of NSHPT. At 6 years of age persisting hypercalcaemia without clinical symptoms was documented, and the patient remained completely symptom free without parathyroid surgery until his present age of 11 years. The entire coding region of the CaSR gene of the patient and his family members was sequenced. Functional investigation was performed in HEK-293 cells, transiently transfected with wild type and mutant CaSR plasmid constructs. Results, Sequence analysis revealed a novel de novo heterozygous mutation at codon 551 (AGG,AAG), predicting a change of arginine to lysine (R551K) and a known heterozygous polymorphism (A986S) on the same allele, which was inherited from the father. We demonstrated that the novel R551K mutation significantly reduced the calcium sensitivity of CaSR (EC50: from 3·38 ± 0·62,6·10 ± 0·83 mmol/l), which was not alleviated by the simultaneous presence of A986S polymorphism. Conclusions, We present the fourth NSHPT case induced by a novel de novo heterozygous inactivating mutation (R551K) of the CaSR gene. The disease gradually reverted to a symptomless, benign condition resembling familial hypocalciuric hypercalcaemia without any surgical intervention. [source] Expanding the phenotypic spectrum of Caffey diseaseCLINICAL GENETICS, Issue 3 2007K Suphapeetiporn Infantile cortical hyperostosis (ICH) is an inherited disorder characterized by hyperirritability, acute inflammation of soft tissues, and massive subperiosteal new bone formation. It typically appears in early infancy and is considered a benign self-limiting disease. We report a three-generation Thai family with ICH, the oldest being a 75-year-old man. A heterozygous mutation for a 3040C,T in exon 41 of COL1A1 was found in affected individuals, further confirming the autosomal dominance of Caffey disease that is caused by this particular mutation. The novel findings in our studies include short stature and persistent bony deformities in the elderly. The height mean Z-score of the five affected individuals was ,1.75, compared to 0.53 of the other seven unaffected individuals giving a p-value of 0.008. Short stature may be partly due to progressive height loss from scoliosis, compression fractures of the spine and genu varus. These features, which have not previously been described, expand the phenotypic spectrum of the Caffey disease. [source] Cerebral palsy in siblings caused by compound heterozygous mutations in the gene encoding protein CDEVELOPMENTAL MEDICINE & CHILD NEUROLOGY, Issue 5 2010CHOONG YI FONG We report two sisters with extensive bilateral periventricular haemorrhagic infarction (PVHI) causing cerebral palsy (CP). The older sister presented at 20 months with cortical visual blindness, spastic diplegia, and purpura fulminans. The younger sister presented aged 3 days old with apnoeas and multifocal seizures. She subsequently had global developmental delay, cortical visual blindness, spastic quadriplegia, epilepsy, and purpura fulminans at age 2 years. Neuroimaging of both siblings showed bilateral PVHI consistent with bilateral cerebral intramedullary venous thrombosis occurring at under 28 weeks' gestation for the older sister and around time of birth for the younger sister. At latest follow-up, the older sister (13y) has spastic diplegia at Gross Motor Function Classification System (GMFCS) level II, and the younger sister (10y) has spastic quadriplegia at GMFCS level IV. Both sisters showed partial quantitative reduction in plasma protein C antigen and severe qualitative reduction in plasma protein C anticoagulant activity. They were heterozygous for two independent mutations in the protein C gene (PROC). There was no other risk factor for CP. To our knowledge, this is the first family reported with compound heterozygous PROC mutations as the likely genetic cause of familial CP. This report adds to the list of known monogenic causes of CP. [source] Genetic Malformations of the Cerebral Cortex and EpilepsyEPILEPSIA, Issue 2005Renzo Guerrini Summary:, We reviewed the epileptogenic cortical malformations for which a causative gene has been cloned or a linkage obtained. X-linked bilateral periventricular nodular heterotopia (BPNH) consists of typical BPNH with epilepsy in female patients and prenatal lethality in most males. About 90% of patients have focal epilepsy. Filamin A mutations have been reported in all families and in ,20% of sporadic patients. A rare recessive form of BPNH also has been reported. Most cases of lissencephaly,pachygyria are caused by mutations of LIS1 and XLIS genes. LIS1 mutations cause a more severe malformation posteriorly. Most children have isolated lissencephaly, with severe developmental delay and infantile spasms, but milder phenotypes have been recorded. XLIS usually causes anteriorly predominant lissencephaly in male patients and subcortical band heterotopia (SBH) in female patients. Thickness of the band and severity of pachygyria correlate with the likelihood of developing Lennox,Gastaut syndrome. Mutations of the coding region of XLIS are found in all reported pedigrees and in 50% of sporadic female patients with SBH. Autosomal recessive lissencephaly with cerebellar hypoplasia; accompanied by severe delay, hypotonia, and seizures, has been associated with mutations of the RELN gene. Schizencephaly has a wide anatomoclinical spectrum, including focal epilepsy in most patients. Familial occurrence is rare. Initial reports of heterozygous mutations in the EMX2 gene need confirmation. Among several syndromes featuring polymicrogyria, bilateral perisylvian polymicrogyria shows genetic heterogeneity, including linkage to Xq28 in some pedigrees, autosomal recessive inheritance in others, and association with 22q11.2 deletion in some patients. About 65% of patients have severe epilepsy, often Lennox,Gastaut syndrome. Recessive bilateral frontal polymicrogyria has been linked to chromosome 16q12.2,21. [source] A unique case of limb-girdle muscular dystrophy type 2A carrying novel compound heterozygous mutations in the human CAPN3 geneEUROPEAN JOURNAL OF NEUROLOGY, Issue 7 2007E. Matsubara A unique sib pair afflicted by limb girdle muscular dystrophy type 2A (LGMD2A) is described showing a slowly progressive autosomal recessive type of muscular dystrophy with onset in the third and fourth decades. The patients had early asymmetric muscle involvement characterized by prominent biceps brachii atrophy with sparing of the knee extensors. Additional findings included elevation of serum creatine kinase level, myopathic EMG changes and dystrophic type of pathology on muscle biopsy. Asymmetrical wasting of muscles in the extremities exhibited uniform and highly selective CT imaging patterns. RNA and DNA analyses confirmed novel compound heterozygous mutations (R147X/L212F) in the human CAPN3 gene. [source] Low frequency of Parkin, Tyrosine Hydroxylase, and GTP Cyclohydrolase I gene mutations in a Danish population of early-onset Parkinson's DiseaseEUROPEAN JOURNAL OF NEUROLOGY, Issue 4 2006J. M. Hertz Autosomal recessive Parkinson's disease (PD) with early-onset may be caused by mutations in the parkin gene (PARK2). We have ascertained 87 Danish patients with an early-onset form of PD (age at onset ,40 years, or ,50 years if family history is positive) in a multicenter study in order to determine the frequency of PARK2 mutations. Analysis of the GTP cyclohydrolase I gene (GCH1) and the tyrosine hydroxylase gene (TH), mutated in dopa-responsive dystonia and juvenile PD, have also been included. Ten different PARK2 mutations were identified in 10 patients. Two of the patients (2.3%) were found to have homozygous or compound heterozygous mutations, and eight of the patients (9.2%) were found to be heterozygous. A mutation has been identified in 10.4% of the sporadic cases and in 15.0% of cases with a positive family history of PD. One patient was found to be heterozygous for both a PARK2 mutation and a missense mutation (A6T) in TH of unknown significance. It cannot be excluded that both mutations contribute to the phenotype. No other putative disease causing TH or GCH1 mutations were found. In conclusion, homozygous, or compound heterozygous PARK2 mutations, and mutations in GCH1 and TH, are rare even in a population of PD patients with early-onset of the disease. [source] The human orthologue of murine Mpzl3 with predicted adhesive and immune functions is a potential candidate gene for immune-related hereditary hair lossEXPERIMENTAL DERMATOLOGY, Issue 3 2009Peter Racz Abstract:, We have recently reported a mutation within the conserved immunoglobulin V-type domain of the predicted adhesion protein Mpzl3 (MIM 611707) in rough coat (rc) mice with severe skin abnormalities and progressive cyclic hair loss. In this study, we tested the hypothesis that the human orthologue MPZL3 on chromosome 11q23.3 is a candidate for similar symptoms in humans. The predicted conserved MPZL3 protein has two transmembrane motifs flanking an extracellular Ig-like domain. The R100Q rc mutation is within the Ig-domain recognition loop that has roles in T-cell receptors and cell adhesion. Results of the rc mouse study, 3D structure predictions, homology with Myelin Protein Zero and EVA1, comprehensive database analyses of polymorphisms and mutations within the human MPZL3 gene and its cell, tissue expression and immunostaining pattern indicate that homozygous or compound heterozygous mutations of MPZL3 might be involved in immune-mediated human hereditary disorders with hair loss. [source] Analysis of somatic APC mutations in rare extracolonic tumors of patients with familial adenomatous polyposis coliGENES, CHROMOSOMES AND CANCER, Issue 2 2004Hendrik Bläker Patients with familial adenomatous polyposis coli (FAP) carry heterozygous mutations of the APC gene. At a young age, these patients develop multiple colorectal adenomas that consistently display a second somatic mutation in the remaining APC wild-type allele. Inactivation of APC leads to impaired degradation of ,-catenin, thereby promoting continuous cell-cycle progression. The role of APC inactivation in rare extracolonic tumors of FAP patients has not been characterized sufficiently. Among tissue specimen from 174 patients with known APC germ-line mutations, we identified 8 tumors infrequently seen in FAP. To investigate the pathogenic role of APC pathway deregulation in these lesions, they were analyzed for second-hit somatic mutations in the mutational cluster region of the APC gene. Immunohistochemistry was performed to compare the expression pattern of ,-catenin to the mutational status of the APC gene. Exon 3 of the ,-catenin gene (CTNNB1) was analyzed for activating mutations to investigate alternative mechanisms of elevated ,-catenin concentration. Although CTNNB1 mutations were not observed, second somatic APC mutations were found in 4 of the 8 tumors: a uterine adenocarcinoma, a hepatocellular adenoma, an adrenocortical adenoma, and an epidermal cyst. These tumors showed an elevated concentration of ,-catenin. No APC mutations were seen in focal nodular hyperplasia of the liver, angiofibrolipoma, and seborrheic wart. This is the first study reporting second somatic APC mutations in FAP-associated uterine adenocarcinoma and epidermal cysts. Furthermore, our data strengthen a role for impaired APC function in the pathogenesis of adrenal and hepatic neoplasms in FAP patients. © 2004 Wiley-Liss, Inc. [source] Heterozygous SOX9 Mutations Allowing for Residual DNA-binding and Transcriptional Activation Lead to the Acampomelic Variant of Campomelic Dysplasia,HUMAN MUTATION, Issue 6 2010Alex Staffler Abstract Campomelic dysplasia is a malformation syndrome with multiple symptoms including characteristic shortness and bowing of the long bones (campomelia). CD, often lethal due to airway malformations, is caused by heterozygous mutations in SOX9, an SRY-related gene regulating testis and chondrocyte development including expression of many cartilage genes such as type II collagen. Male to female sex reversal occurs in the majority of affected individuals with an XY karyotype. A mild form without campomelia exists, in which sex-reversal may be also absent. We report here two novel SOX9 missense mutations in a male (c.495C>G; p.His165Gln) and a female (c.337A>G; p.Met113Val) within the DNA-binding domain leading to non-lethal acampomelic CD. Functional analyses of mutant proteins demonstrate residual DNA-binding and transactivation of SOX9-regulated genes. Combining our data and reports from the literature we postulate a genotype-phenotype correlation: SOX9 mutations allowing for residual function lead to a mild form of CD in which campomelia and sex reversal may be absent. © 2010 Wiley-Liss, Inc. [source] Clinically reported heterozygous mutations in the PINK1 kinase domain exert a gene dosage effect,HUMAN MUTATION, Issue 11 2009Eng-King Tan Abstract Mutations in the gene encoding phosphatase and tensin homolog (PTEN)-induced kinase 1 (PINK1) have been associated with the loss of dopaminergic neurons characteristic of familial and sporadic Parkinson disease. We developed an in vitro system of stable human dopaminergic neuronal cell lines coexpressing an equivalent copy of normal and mutant PINK1 to simulate "heterozygous" and "homozygous" states in patients. Mutants in the N-terminus, C-terminus, and kinase domain were generated and cloned into a two-gene mammalian expression vector to generate stable mammalian expression cell lines producing an equivalent copy number of wild-type/mutant PINK1. The cell lines were subjected to oxidative stress and the rate of apoptosis and change in mitochondrial membrane potential (,,m) were assessed. Cell lines expressing kinase and C-terminus mutants exhibited a greater rate of apoptosis and decrease in ,,m, and increased time-dependent cell loss when subjected to oxidative stress compared to the wild-type. Cell lines expressing two copies of kinase mutants exhibited a greater apoptosis rate and ,,m decrease than those expressing one copy of the mutant. In time-dependent experiments, there was a significant difference between "homozygous," "heterozygous," and wild-type cell lines, with decreasing cell survival in cell lines expressing mutant copies of PINK1 compared to the wild-type. We provided the first experimental evidence that clinically reported PINK1 heterozygous mutations exert a gene dosage effect, suggesting that haploinsufficiency of PINK1 is the most likely mechanism that increased the susceptibility to dopaminergic cellular loss. Hum Mutat 30:1551,1557, 2009. © 2009 Wiley-Liss, Inc. [source] Granulin mutations associated with frontotemporal lobar degeneration and related disorders: An update,HUMAN MUTATION, Issue 12 2008I. Gijselinck Abstract Mutations in the gene encoding granulin (HUGO gene symbol GRN, also referred to as progranulin, PGRN), located at chromosome 17q21, were recently linked to tau-negative ubiquitin-positive frontotemporal lobar degeneration (FTLDU). Since then, 63 heterozygous mutations were identified in 163 families worldwide, all leading to loss of functional GRN, implicating a haploinsufficiency mechanism. Together, these mutations explained 5 to 10% of FTLD. The high mutation frequency, however, might still be an underestimation because not all patient samples were examined for all types of loss-of-function mutations and because several variants, including missense mutations, have a yet uncertain pathogenic significance. Although the complete phenotypic spectrum associated with GRN mutations is not yet fully characterized, it was shown that it is highly heterogeneous, suggesting the influence of modifying factors. A role of GRN in neuronal survival was suggested but the exact mechanism by which neurodegeneration and deposition of pathologic brain inclusions occur still has to be clarified. Hum Mutat 0, 1,14, 2008. © 2008 Wiley-Liss, Inc. [source] |