Home About us Contact | |||
Heritable Differences (heritable + difference)
Selected AbstractsHigh-Alcohol Preferring Mice Are More Impulsive Than Low-Alcohol Preferring Mice as Measured in the Delay Discounting TaskALCOHOLISM, Issue 7 2009B. G. Oberlin Background:, Repeated studies have shown that high impulsivity, when defined as the tendency to choose small immediate rewards over larger delayed rewards, is more prevalent in drug addicts and alcoholics when compared with nonaddicts. Assessing whether impulsivity precedes and potentially causes addiction disorders is difficult in humans because they all share a history of drug use. In this study, we address this question by testing alcohol-naïve mice from lines showing heritable differences in alcohol intake. Methods:, Replicated selected lines of outbred high-alcohol preferring (HAP) mice were compared to a low-alcohol preferring (LAP) line as well as the low-drinking progenitor line (HS/Ibg) on an adjusting amount delay discounting (DD) task. The DD task employs 2 levers to present subjects with a choice between a small, immediate and a large, delayed saccharin reward. By adjusting the quantity of the immediate reward up and down based on choice behavior, the task allows an estimate of how the subjective value of the delayed reinforcer decreases as delays increase. Latency to respond was also measured for each trial. Results:, Both HAP2 and HAP1 lines of mice were more impulsive than the LAP2 and HS/Ibg lines, respectively. Hyperbolic curve-fitting confirmed steeper discounting in the high-alcohol drinking lines. In addition, the high-alcohol drinking lines demonstrated greater within-session increases in reaction times relative to the low-alcohol drinking lines. No other differences (consumption of saccharin, total trials completed) consistently mapped onto genetic differences in alcohol drinking. Conclusions:, Alcohol-naïve outbred mice selected for high-alcohol drinking were more impulsive with saccharin reinforcers than low-alcohol drinkers. These data are consistent with results seen using inbred strain descendents of high-alcohol drinking and low-alcohol drinking rat lines, and suggest that impulsivity is a heritable difference that precedes alcoholism. [source] Epigenetic control of skeletal muscle fibre typeACTA PHYSIOLOGICA, Issue 4 2010K. Baar Abstract Adult muscle is extremely plastic. However, the muscle precursor cells associated with those fibres show stable and heritable differences in gene expression indicative of epigenetic imprinting. Epigenetic processes in the development of skeletal muscle have been appreciated for over a decade; however, there are a paucity of studies looking at whether epigenetics determines the phenotype of adult and/or ageing skeletal muscle. This review presents the evidence that epigenetics plays a role in determining adult muscle function and a series of unanswered questions that would greatly increase our understanding of how epigenetics works in adult muscle. With the increased interest in epigenetics, over the next few years this field will begin to unfold in unimaginable directions. [source] Implications of a fossil stickleback assemblage for Darwinian gradualismJOURNAL OF FISH BIOLOGY, Issue 8 2009M. A. Bell Darwin postulated that a complete fossil record would contain numerous gradual transitions between ancestral and descendant species, but 150 years after publication of The Origin of Species, few such transitions have materialized. The fossil stickleback Gasterosteus doryssus and the deposit in which it occurs provide excellent conditions to detect such transitions. Abundant, well-preserved fossils occur in a stratigraphic setting with fine temporal resolution. The paleoecology of G. doryssus resembles the ecology of modern lakes that harbour the phenotypically similar three-spined stickleback Gasterosteus aculeatus. Gasterosteus aculeatus are primitively highly armoured, but G. doryssus comprised two contemporaneous biological species with relatively weak armour, including a near-shore, benthic feeder (benthic) and an offshore planktivore (limnetic). The benthic species expanded its range into the limnetic zone of the lake, where it apparently switched to planktivory and evolved reduced armour within c. 5000 years in response to directional selection. Although gradual evolution of mean phenotypes occurred, a single major gene caused much of evolutionary change of the pelvic skeleton. Thus, Darwin's expectation that transitions between species in the fossil record would be gradual was met at a fine time scale, but for pelvic structure, a well-studied trait, his expectation that gradual change would depend entirely on numerous, small, heritable differences among individuals was incorrect. [source] High-Alcohol Preferring Mice Are More Impulsive Than Low-Alcohol Preferring Mice as Measured in the Delay Discounting TaskALCOHOLISM, Issue 7 2009B. G. Oberlin Background:, Repeated studies have shown that high impulsivity, when defined as the tendency to choose small immediate rewards over larger delayed rewards, is more prevalent in drug addicts and alcoholics when compared with nonaddicts. Assessing whether impulsivity precedes and potentially causes addiction disorders is difficult in humans because they all share a history of drug use. In this study, we address this question by testing alcohol-naïve mice from lines showing heritable differences in alcohol intake. Methods:, Replicated selected lines of outbred high-alcohol preferring (HAP) mice were compared to a low-alcohol preferring (LAP) line as well as the low-drinking progenitor line (HS/Ibg) on an adjusting amount delay discounting (DD) task. The DD task employs 2 levers to present subjects with a choice between a small, immediate and a large, delayed saccharin reward. By adjusting the quantity of the immediate reward up and down based on choice behavior, the task allows an estimate of how the subjective value of the delayed reinforcer decreases as delays increase. Latency to respond was also measured for each trial. Results:, Both HAP2 and HAP1 lines of mice were more impulsive than the LAP2 and HS/Ibg lines, respectively. Hyperbolic curve-fitting confirmed steeper discounting in the high-alcohol drinking lines. In addition, the high-alcohol drinking lines demonstrated greater within-session increases in reaction times relative to the low-alcohol drinking lines. No other differences (consumption of saccharin, total trials completed) consistently mapped onto genetic differences in alcohol drinking. Conclusions:, Alcohol-naïve outbred mice selected for high-alcohol drinking were more impulsive with saccharin reinforcers than low-alcohol drinkers. These data are consistent with results seen using inbred strain descendents of high-alcohol drinking and low-alcohol drinking rat lines, and suggest that impulsivity is a heritable difference that precedes alcoholism. [source] A double-screening method to identify reliable candidate non-synonymous SNPs from chicken EST dataANIMAL GENETICS, Issue 4 2003H. Kim Summary Discovery of non-synonymous single nucleotide polymorphisms (nsSNP), which cause amino acid substitutions, is important because they are more likely to alter protein function than synonymous SNPs (sSNP) or those SNPs that do not result in amino acid changes. By changing the coding sequences, nsSNP may play a role in heritable differences between individual organisms. In the chicken and many other vertebrates, the main obstacle for identifying nsSNP is that there is insufficient protein and mRNA sequence information for self-species referencing and thus, determination of the correct reading frame for expressed sequence tags (ESTs) is difficult. Therefore, in order to estimate the correct reading frame at nsSNP in chicken ESTs, a double-screening approach was designed using self- or cross-species protein referencing, in addition to the ESTScan coding region estimation programme. Starting with 23 427 chicken ESTs, 1210 potential SNPs were discovered using a phred/phrap/polyphred/consed pipeline process and among these, 108 candidate nsSNP were identified with the double screening method. A searchable SNP database (chicksnps) for the candidate chicken SNPs, including both nsSNPs and sSNPs is available at http://chicksnps.afs.udel.edu. The chicken SNP data described in this paper have been submitted to the data base SNP under National Center for Biotechnology Information assay ID ss4387050-ss4388259. [source] |