Home About us Contact | |||
Hepatocyte Proliferation (hepatocyte + proliferation)
Selected AbstractsEffect of porto-systemic shunting on NOS expression after extended hepatectomy in ratsHEPATOLOGY RESEARCH, Issue 1 2009Hironori Hayashi Aim:, Several surgical procedures have been developed for reducing portal vein pressure to prevent postoperative liver injury. Nitric oxide synthase expression (NOS) induced by elevation of portal vein pressure is thought to play an important role in liver regeneration, but the details are not well understood. Methods:, Rats in the control group and in the subcutaneous splenic transposition (SST) group underwent 90% partial hepatectomy. Survival and portal vein pressure were analyzed. The serum IL-6 and TNF-, levels were measured by enzyme-linked immunosorbent assay (ELISA). Hepatocyte proliferation and apoptosis 12 hours after hepatectomy were analyzed immunohistochemically. The protein and messenger RNA expression of inducible and endothelial NOS were analyzed using Western blotting and quantitative reverse transcriptase polymerase chain reaction, respectively. Results:, The survival rate of the SST group was significantly higher. Portal vein pressure, TNF-, level and the apoptotic index were significantly lower in the SST group. Twelve hours after surgery, liver inducible NOS (iNOS) protein expression was significantly lower in the SST group. However, protein expression of endothelial NOS was not significantly different between the groups. Conclusion:, Inducible NOS expression after extended hepatectomy is related to the effects of porto-systemic shunting on the splanchnic circulation. Also, iNOS induction and concomitant nitric oxide generation appear to participate in the cytotoxicity of excessive portal pressure after extended hepatectomy. [source] Pfkfb3 is transcriptionally upregulated in diabetic mouse liver through proliferative signalsFEBS JOURNAL, Issue 16 2009Joan Duran The ubiquitous isoform of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (uPFK-2), a product of the Pfkfb3 gene, plays a crucial role in the control of glycolytic flux. In this study, we demonstrate that Pfkfb3 gene expression is increased in streptozotocin-induced diabetic mouse liver. The Pfkfb3/-3566 promoter construct linked to the luciferase reporter gene was delivered to the liver via hydrodynamic gene transfer. This promoter was upregulated in streptozotocin-induced diabetic mouse liver compared with transfected healthy cohorts. In addition, increases were observed in Pfkfb3 mRNA and uPFK-2 protein levels, and intrahepatic fructose-2,6-bisphosphate concentration. During streptozotocin-induced diabetes, phosphorylation of both p38 mitogen-activated protein kinase and Akt was detected, together with the overexpression of the proliferative markers cyclin D and E2F. These findings indicate that uPFK-2 induction is coupled to enhanced hepatocyte proliferation in streptozotocin-induced diabetic mouse liver. Expression decreased when hepatocytes were treated with either rapamycin or LY 294002. This shows that uPFK-2 regulation is phosphoinositide 3-kinase,Akt,mammalian target of rapamycin dependent. These results indicate that fructose-2,6-bisphosphate is essential to the maintenance of the glycolytic flux necessary for providing energy and biosynthetic precursors to dividing cells. [source] Suppression of liver regeneration and hepatocyte proliferation in hepatocyte-targeted glypican 3 transgenic mice,HEPATOLOGY, Issue 3 2010Bowen Liu Glypican 3 (GPC3) belongs to a family of glycosylphosphatidylinositol-anchored, cell-surface heparan sulfate proteoglycans. GPC3 is overexpressed in hepatocellular carcinoma. Loss-of-function mutations of GPC3 result in Simpson-Golabi-Behmel syndrome, an X-linked disorder characterized by overgrowth of multiple organs, including the liver. Our previous study showed that GPC3 plays a negative regulatory role in hepatocyte proliferation, and this effect may involve CD81, a cell membrane tetraspanin. To further investigate GPC3 in vivo, we engineered transgenic (TG) mice overexpressing GPC3 in the liver under the control of the albumin promoter. GPC3 TG mice with hepatocyte-targeted, overexpressed GPC3 developed normally in comparison with their nontransgenic littermates but had a suppressed rate of hepatocyte proliferation and liver regeneration after partial hepatectomy. Moreover, gene array analysis revealed a series of changes in the gene expression profiles in TG mice (both in normal mice and during liver regeneration). In unoperated GPC3 TG mice, there was overexpression of runt related transcription factor 3 (7.6-fold), CCAAT/enhancer binding protein alpha (2.5-fold), GABA A receptor (2.9-fold), and wingless-related MMTV integration site 7B (2.8-fold). There was down-regulation of insulin-like growth factor binding protein 1 (8.4-fold), Rab2 (5.6-fold), beta-catenin (1.7-fold), transforming growth factor beta type I (3.1-fold), nodal (1.8-fold), and yes-associated protein (1.4-fold). Changes after hepatectomy included decreased expression in several cell cycle,related genes. Conclusion: Our results indicate that in GPC3 TG mice, hepatocyte overexpression of GPC3 suppresses hepatocyte proliferation and liver regeneration and alters gene expression profiles, and potential cell cycle,related proteins and multiple other pathways are involved and affected. (HEPATOLOGY 2010;52:1060,1067) [source] MicroRNAs control hepatocyte proliferation during liver regeneration,HEPATOLOGY, Issue 5 2010Guisheng Song MicroRNAs (miRNAs) constitute a new class of regulators of gene expression. Among other actions, miRNAs have been shown to control cell proliferation in development and cancer. However, whether miRNAs regulate hepatocyte proliferation during liver regeneration is unknown. We addressed this question by performing 2/3 partial hepatectomy (2/3 PH) on mice with hepatocyte-specific inactivation of DiGeorge syndrome critical region gene 8 (DGCR8), an essential component of the miRNA processing pathway. Hepatocytes of these mice were miRNA-deficient and exhibited a delay in cell cycle progression involving the G1 to S phase transition. Examination of livers of wildtype mice after 2/3 PH revealed differential expression of a subset of miRNAs, notably an induction of miR-21 and repression of miR-378. We further discovered that miR-21 directly inhibits Btg2, a cell cycle inhibitor that prevents activation of forkhead box M1 (FoxM1), which is essential for DNA synthesis in hepatocytes after 2/3 PH. In addition, we found that miR-378 directly inhibits ornithine decarboxylase (Odc1), which is known to promote DNA synthesis in hepatocytes after 2/3 PH. Conclusion: Our results show that miRNAs are critical regulators of hepatocyte proliferation during liver regeneration. Because these miRNAs and target gene interactions are conserved, our findings may also be relevant to human liver regeneration. (HEPATOLOGY 2010) [source] Cyclin-dependent kinase 1 plays a critical role in DNA replication control during rat liver regeneration,HEPATOLOGY, Issue 6 2009Delphine Garnier Liver regeneration is a unique process to restore hepatic homeostasis through rapid and synchronous proliferation of differentiated hepatocytes. Previous studies have shown that hepatocyte proliferation is characterized by high expression levels of the "mitotic" cyclin-dependent kinase 1 (Cdk1) during S-phase compared to other mammalian cells. In the light of findings showing that Cdk1 compensates for the loss of Cdk2 and drives S-phase in Cdk2-deficient cells derived from Cdk2 knockout mice, we took advantage of the models of liver regeneration following partial hepatectomy and primary cultures of normal rat hepatocytes to further examine the involvement of Cdk1 during DNA replication in hepatocytes and to dissect specific cell cycle regulation in hepatocytes compared to control human foreskin fibroblasts. In hepatocytes, Cdk1 exhibited a biphasic activation pattern correlating S-phase and G2/M transition, bound to cyclin A or B1 and localized to the nucleus during DNA replication. Importantly, small interfering RNA (siRNA)-mediated silencing of Cdk1 led to a strong decrease in DNA synthesis without affecting centrosome duplication. Furthermore, in hepatocytes arrested by the iron chelator O-Trensox in early S-phase prior to DNA replication, Cdk1/cyclin complexes were active, while replication initiation components such as the minichromosome maintenance 7 (Mcm7) protein were loaded onto DNA. Moreover, Mcm7 expression and loading onto DNA were not modified by Cdk1 silencing. Conversely, in fibroblasts, Cdk1 expression and activation were low in S-phase and its silencing did not reduce DNA synthesis. Conclusion: Cdk1 is essential for DNA replication downstream formation of replication initiation complexes in hepatocytes but not in fibroblasts and, as such, our data exemplify crucial differences in the cell cycle regulation between various mammalian cell types. (HEPATOLOGY 2009.) [source] Modeling complex decay profiles of hepatitis B virus during antiviral therapy,,HEPATOLOGY, Issue 1 2009Harel Dahari Typically, hepatitis B virus (HBV) decays in patients under therapy in a biphasic manner. However, more complex decay profiles of HBV DNA (e.g., flat partial response, triphasic, and stepwise), for which we have no clear understanding, have also been observed in some treated patients. We recently introduced the notion of a critical drug efficacy, ,c, such that if overall drug efficacy, ,tot, is higher than the critical drug efficacy (i.e., ,tot > ,c) then viral levels will continually decline on therapy, while if ,tot < ,c, then viral loads will initially decline but will ultimately stabilize at a new set point, as seen in flat partial responders. Using the idea of critical efficacy and including hepatocyte proliferation in a viral kinetic model, we can account for these complex HBV DNA decay profiles. The model predicts that complex profiles such as those exhibiting a plateau or shoulder phase, as well as a class of stepwise declines, occur only in patients in whom the majority of hepatocytes are infected before therapy. Conclusion: We show via kinetic modeling how a variety of HBV DNA decay profiles can arise in treated patients. (HEPATOLOGY 2009;49:32-38.) [source] Isolation and functional identification of a novel human hepatic growth factor: Hepatopoietin Cn,HEPATOLOGY, Issue 3 2008Chun-Ping Cui Hepatic stimulating substance (HSS) was first isolated from weanling rat liver in 1975 and found to stimulate hepatic DNA synthesis both in vitro and in vivo. Since then, mammalian and human HSS have been investigated for their potential to treat hepatic diseases. However, the essential nature in composition and structure of HSS remain puzzling because HSS has not been completely purified. Heating, ethanol precipitation, and ion-exchange chromatographies had been carried out to isolate the protein with specific stimulating activity from newborn calf liver, and [3H]thymidine deoxyribose (TdR)/bromodeoxyuridine (BrdU) incorporation and carboxyfluorescein diacetate succinimidyl ester (CFSE)-based proliferation assay to determine the bioactivity in vitro and in vivo. We report the purification of a novel 30-kDa protein from a crude extract of calf liver HSS. This protein is a member of the leucine-rich acidic nuclear protein family (LANP) and has been named hepatopoietin Cn (HPPCn). Studies of partially hepatectomized (PH) mice show that levels of HPPCn messenger RNA (mRNA) increase after liver injury. Furthermore, the recombinant human protein (rhHPPCn) was shown to stimulate hepatic DNA synthesis and activate signaling pathways involved in hepatocyte proliferation in vitro and in vivo. Conclusion: HPPCn is a novel hepatic growth factor that plays a role in liver regeneration. (HEPATOLOGY 2008;47:986,995.) [source] Impaired liver regeneration and increased oval cell numbers following T cell,mediated hepatitis,HEPATOLOGY, Issue 1 2007Ian N. Hines The regeneration of liver tissue following transplantation is often complicated by inflammation and tissue damage induced by a number of factors, including ischemia and reperfusion injury and immune reactions to the donor tissue. The purpose of the current study is to characterize the effects of T cell,mediated hepatitis induced by concanavalin A (ConA) on the regenerative response in vivo. Liver regeneration following a partial (70%) hepatectomy (pHx) was associated with elevations in serum enzymes and the induction of key cell cycle proteins (cyclin D, cyclin E, and Stat3) and hepatocyte proliferation. The induction of T cell,mediated hepatitis 4 days before pHx increased serum enzymes 48 hours after pHx, reduced early cyclin D expression and Stat3 activation, and suppressed hepatocyte proliferation. This inhibition of proliferation was also associated with increased expression of p21, the activation of Smad2, the induction of transforming growth factor beta and interferon gamma expression, and reduced hepatic interleukin 6 production. Moreover, the ConA pretreatment increased the numbers of separate oval cell-like CD117+ cells and hematopoietic-like Sca-1+ cell populations 48 hours following pHx. The depletion of natural killer (NK) cells, an important component of the innate immune response, did not affect liver injury or ConA-induced impairment of hepatocyte proliferation but did increase the numbers of both CD117-positive and Sca-1,positive cell populations. Finally, splenocytes isolated from ConA-pretreated mice exerted cytotoxicity toward autologous bone marrow cells in an NK cell,dependent manner. Conclusion: T cell,mediated hepatitis alters early cytokine responses, reduces hepatocellular regeneration, and induces NK cell,sensitive oval cell and hematopoietic-like cell expansion following pHx. (HEPATOLOGY 2007;46:229,241.) [source] Cell cycle effects resulting from inhibition of hepatocyte growth factor and its receptor c-Met in regenerating rat livers by RNA interference,HEPATOLOGY, Issue 6 2007Shirish Paranjpe Hepatocyte growth factor (HGF) and its receptor c-Met are involved in liver regeneration. The role of HGF and c-Met in liver regeneration in rat following two-thirds partial hepatectomy (PHx) was investigated using RNA interference to silence HGF and c-Met in separate experiments. A mixture of 2 c-Met-specific short hairpin RNA (ShRNA) sequences, ShM1 and ShM2, and 3 HGF-specific ShRNA, ShH1, ShH3, and ShH4, were complexed with linear polyethylenimine. Rats were injected with the ShRNA/PEI complex 24 hours before and at the time of PHx. A mismatch and a scrambled ShRNA served as negative controls. ShRNA treatment resulted in suppression of c-Met and HGF mRNA and protein compared with that in controls. The regenerative response was assessed by PCNA, mitotic index, and BrdU labeling. Treatment with the ShHGF mixture resulted in moderate suppression of hepatocyte proliferation. Immunohistochemical analysis revealed severe suppression of incorporation of BrdU and complete absence of mitosis in rats treated with ShMet 24 hours after PHx compared with that in controls. Gene array analyses indicated abnormal expression patterns in many cell-cycle- and apoptosis-related genes. The active form of caspase 3 was seen to increase in ShMet-treated rats. The TUNEL assay indicated a slight increase in apoptosis in ShMet-treated rats compared with that in controls. Conclusion: The data indicated that in vivo silencing of c-Met and HGF mRNA by RNA interference in normal rats results in suppression of mRNA and protein, which had a measurable effect on proliferation kinetics associated with liver regeneration. (HEPATOLOGY 2007.) [source] Novel hepatic progenitor cell surface markers in the adult rat liver,HEPATOLOGY, Issue 1 2007Mladen I. Yovchev Hepatic progenitor/oval cells appear in injured livers when hepatocyte proliferation is impaired. These cells can differentiate into hepatocytes and cholangiocytes and could be useful for cell and gene therapy applications. In this work, we studied progenitor/oval cell surface markers in the liver of rats subjected to 2-acetylaminofluorene treatment followed by partial hepatectomy (2-AAF/PH) by using rat genome 230 2.0 Array chips and subsequent RT-PCR, immunofluorescent (IF), immunohistochemical (IHC) and in situ hybridization (ISH) analyses. We also studied expression of the identified novel cell surface markers in fetal rat liver progenitor cells and FAO-1 hepatoma cells. Novel cell surface markers in adult progenitor cells included tight junction proteins, integrins, cadherins, cell adhesion molecules, receptors, membrane channels and other transmembrane proteins. From the panel of 21 cell surface markers, 9 were overexpressed in fetal progenitor cells, 6 in FAO-1 cells and 6 are unique for the adult progenitors (CD133, claudin-7, cadherin 22, mucin-1, ros-1, Gabrp). The specificity of progenitor/oval cell surface markers was confirmed by ISH and double IF analyses. Moreover, study of progenitor cells purified with Ep-CAM antibodies from D-galactosamine injured rat liver, a noncarcinogenic model of progenitor cell activation, verified that progenitor cells expressed these markers. Conclusion: We identified novel cell surface markers specific for hepatic progenitor/oval cells, which offers powerful tool for their identification, isolation and studies of their physiology and pathophysiology. Our studies also reveal the mesenchymal/epithelial phenotype of these cells and the existence of species diversity in the hepatic progenitor cell identity. (HEPATOLOGY 2007;45:139,149.) [source] An inhibitor of cyclin-dependent kinase, stress-induced p21Waf-1/Cip-1, mediates hepatocyte mito-inhibition during the evolution of cirrhosis,HEPATOLOGY, Issue 6 2005John G. Lunz III During the evolution of cirrhosis, there is a relative decrease in volume percentage of hepatocytes and a relative increase in biliary epithelial cells and myofibroblasts. This is recognized histopathologically as a ductular reaction and leads to gradual distortion of the normal hepatic architecture. The final or decompensated stage of cirrhosis is characterized by a further decline in hepatocyte proliferation and loss of functional liver mass that manifests clinically as ascites, encephalopathy, and other signs of liver failure. In this report, we tested the hypothesis that p21-mediated hepatocyte mito-inhibition accelerates the evolution of cirrhosis using an established mouse model of decompensated biliary cirrhosis, p21-deficient mice, and liver tissue from humans awaiting liver replacement. Despite the same insult of long-term (12-week) bile duct ligation, mice prone to decompensation showed significantly more oxidative stress and hepatocyte nuclear p21 expression, which resulted in less hepatocyte proliferation, an exaggerated ductular reaction, and more advanced disease compared with compensation-prone controls. Mice deficient in p21 were better able than wild-type controls to compensate for long-term bile duct ligation because of significantly greater hepatocyte proliferation, which led to a larger liver mass and less architectural distortion. Mito-inhibitory hepatocyte nuclear p21 expression in humans awaiting liver replacement directly correlated with pathological disease stage and model of end-stage liver disease scoring. In conclusion, stress-induced upregulation of hepatocyte p21 inhibits hepatocyte proliferation during the evolution of cirrhosis. These findings have implications for understanding the evolution of cirrhosis and associated carcinogenesis. Supplementary material for this article can be found on the HEPATOLOGY website (http://interscience.wiley.com/jpages/0270-9139/suppmat/index.html). (HEPATOLOGY 2005.) [source] Aging does not reduce the hepatocyte proliferative response of mice to the primary mitogen TCPOBOPHEPATOLOGY, Issue 4 2004Giovanna M. Ledda-Columbano It has been shown that the magnitude of DNA synthesis and the time at which maximal DNA synthesis occurs after two-thirds partial hepatectomy (PH) is greatly reduced in the liver of aged rodents compared to young animals. This reduction could represent an intrinsic defect in proliferation or a more specialized change in the response to PH. We therefore evaluated the proliferative capacity of hepatocytes in aged animals, following treatment with primary liver mitogens. We show that treatment of 12-month-old CD-1 mice with the hepatomitogen 1,4-bis[2-(3,5-dichloropyridyloxy)]benzene (TCPOBOP) caused an increase in hepatocyte proliferation similar to that seen in young (8-week-old) mice. The labeling index was 82% in the livers of aged mice versus 76% in young animals. Histological observation demonstrated that the number of hepatocytes entering mitoses was similar in both groups; the mitotic indices were 2.5 per thousand and 2.7 per thousand, respectively. Additional experiments showed that the timing of DNA synthesis and M phase were nearly identical in both aged and young mice. Stimulation of hepatocyte DNA synthesis was associated with increased expression of several cell cycle-associated proteins (cyclin D1, cyclin A, cyclin B1, E2F, pRb, and p107); all were comparable in aged mice and young mice. TCPOBOP treatment also increased expression of the Forkhead Box transcription factor m1b (Foxm 1b) to a similar degree in both groups. In conclusion, hepatocytes retain their proliferative capacity in old age despite impaired liver regeneration. These findings suggest that therapeutic use of mitogens would alleviate the reduction in hepatocyte proliferation observed in the elderly. (Hepatology 2000;40:981,988). [source] Growth hormone stimulates proliferation of old-aged regenerating liver through forkhead box m1bHEPATOLOGY, Issue 6 2003Katherine Krupczak-Hollis The Forkhead Box (Fox) proteins are an extensive family of transcription factors that shares homology in the winged helix DNA-binding domain and the members of which play essential roles in cellular proliferation, differentiation, and longevity. Reduced cellular proliferation during aging is associated with a progressive decline in both growth hormone (GH) secretion and Foxm1b expression. Liver regeneration studies with 12-month-old (old-aged) transgenic mice indicated that increased hepatocyte expression of Foxm1b alone is sufficient to restore hepatocyte proliferation to levels found in 2-month-old (young) regenerating liver. GH therapy in older people has been shown to cause an increase in cellular proliferation, but the transcription factors that mediated this stimulation in proliferation remain uncharacterized. In this study, we showed that human GH administration to old-aged Balb/c mice dramatically increased both expression of Foxm1b and regenerating hepatocyte proliferation. This increase in old-aged regenerating hepatocyte proliferation was associated with elevated protein expression of Cdc25A, Cdc25B, and cyclin B1, with reduced protein levels of cyclin-dependent kinase inhibitor p27Kip1 (p27). GH treatment also was found to stimulate hepatocyte proliferation and expression of Foxm1b protein without partial hepatectomy (PHx). Furthermore, GH treatment of young Foxm1b ,/, mice failed to restore regenerating hepatocyte DNA replication and mitosis caused by Foxm1b deficiency. These genetic studies provided strong evidence that the presence of Foxm1b is essential for GH to stimulate regenerating hepatocyte proliferation. In conclusion, our old-aged liver regeneration studies show that increased Foxm1b levels are essential for GH to stimulate hepatocyte proliferation, thus providing a mechanism for GH action in the elderly. [source] PI3K-FRAP/mTOR pathway is critical for hepatocyte proliferation whereas MEK/ERK supports both proliferation and survivalHEPATOLOGY, Issue 5 2002Alexandre Coutant Growth factors are known to favor both proliferation and survival of hepatocytes. In this work, we investigated the role of 2 main signaling pathways, phosphoinositide 3-kinase (PI3K) and mitogen-activated protein kinase (MEK)/extracellular signal,regulated kinase (ERK), in these processes. First, evidence was provided that the PI3K cascade as well as the MEK/ERK cascade is a key transduction pathway controlling hepatocyte proliferation, as ascertained by arrest of DNA synthesis in the presence of LY294002, a specific PI3K inhibitor. Inhibition of FRAP/mTOR by rapamycin also abrogated DNA replication and protein synthesis induced by growth factor. We showed that expression of cyclin D1 at messenger RNA (mRNA) and protein levels was regulated by this pathway. We highlighted that 4E-BP1 phosphorylation was not activated by epidermal growth factor (EGF) but was under an insulin-regulation mechanism through a PI3K-FRAP/mTOR activation that could account for the permissive role of insulin on hepatocyte proliferation. No interference between the MEK/ERK pathway and 4E-BP1 phosphorylation was detected, whereas p70S6K phosphorylation induced by EGF was under a U0126-sensitive regulation. Last, we established that the antiapoptotic function of EGF was dependent on MEK, whereas LY294002 and rapamycin had no direct effect on cell survival. Taken together, these data highlight the regulation and the role of 2 pathways that mediate growth-related response by acting onto distinct steps. In conclusion, hepatocyte progression in late G1 phase induced by EGF generates survival signals depending on MEK activation, whereas PI3K and MEK/ERK cascades are both necessary for hepatocyte replication. [source] p53 may positively regulate hepatocyte proliferation in ratsHEPATOLOGY, Issue 2 2002Yukiko Inoue p53, known as a tumor suppressor gene, is a transcription factor that regulates various cellular functions. Recently, several growth factor gene promoters, including that of transforming growth factor , (TGF-,), were shown to be direct targets of p53-mediated transcription. Hepatic p53 mRNA is up-regulated during liver regeneration in rats. The aim of this study is to examine the role of p53 in hepatocyte proliferation. p53 protein levels were examined in rat hepatocytes cultured in the medium containing hepatocyte growth factor (HGF). p53 levels began to increase after 6 hours of incubation, reached a maximum at 18 hours, and decreased thereafter. DNA synthesis increased at 12 hours and peaked at 30 hours. When hepatocytes were incubated with p53 antisense oligonucleotide in addition to HGF, increases of p53 and TGF-, levels were suppressed, and DNA synthesis was reduced. The increases of TGF-, levels and DNA synthesis were also suppressed by a chemical inhibitor of p53, pifithrin-,. In rats after two-thirds partial hepatectomy, hepatic p53 increased and reached maximal levels around 16 hours when hepatic HGF levels have been shown to reach a maximum followed by an increase in hepatic TGF-, levels or hepatocyte proliferation. In contrast, sham-operated rats showed minor elevations of hepatic p53 levels. In conclusion, p53 production is stimulated by HGF and may contribute to the proliferation of rat hepatocytes. Considering previous findings indicating the importance of endogenous TGF-, for the proliferation of hepatocytes stimulated by HGF, TGF-, might play a role in HGF-p53 mediated hepatocyte proliferation. [source] Earlier expression of the transcription factor HFH-11B diminishes induction of p21CIP1/WAF1 levels and accelerates mouse hepatocyte entry into S-phase following carbon tetrachloride liver injuryHEPATOLOGY, Issue 6 2001Xinhe Wang Partial hepatectomy (PH) or toxic liver injury induces the proliferation of terminally differentiated hepatic cells to regenerate the original size of the adult liver. Previous PH liver regeneration studies showed that premature transgenic expression of the Forkhead Box M1b (FoxM1b, HFH-11B) transcription factor accelerated hepatocyte entry into DNA replication (S-phase). In this study, we used carbon tetrachloride (CCl4) liver injury to induce a different type of mouse liver regeneration and show that premature hepatic HFH-11B levels also accelerate the onset of hepatocyte S-phase in this injury model. Unlike PH liver regeneration, earlier hepatocyte proliferation after CCl4 liver injury is correlated with diminished transgenic hepatic levels of p21CIP1/WAF1 at the G1/S transition of the cell cycle. Differential hybridization of cDNA arrays and RNase protection studies determined that CCl4 regenerating liver of transgenic mice displayed early stimulated expression of the S-phase promoting cyclin D1 and cyclin E and sustained levels of Cdc25a phosphatase genes. Compared with previous PH liver regeneration studies, our data suggest that premature expression of HFH-11B activates distinct S-phase promotion pathways in the CCl4 liver injury model. Although proliferating transgenic hepatocytes induced by either PH or CCl4 liver injury displayed early expression of identical M-phase cyclin genes (cyclin B1, B2, A2, and F), only CCl4 regenerating transgenic liver exhibited earlier expression of the M-phase promoting Cdc25b. These studies suggest that CCl4 injury of transgenic liver not only uses the same mechanisms as PH to mediate accelerated hepatocyte entry into mitosis, but also promotes M-phase entry by stimulating Cdc25b expression. [source] Regulatory processes interacting to maintain hepatic blood flow constancy: Vascular compliance, hepatic arterial buffer response, hepatorenal reflex, liver regeneration, escape from vasoconstrictionHEPATOLOGY RESEARCH, Issue 11 2007W. Wayne Lautt Constancy of hepatic blood flow (HBF) is crucial for several homeostatic roles. The present conceptual review focuses on interrelated mechanisms that act to maintain a constant HBF per liver mass. The liver cannot directly control portal blood flow (PF); therefore, these mechanisms largely operate to compensate for PF changes. A reduction in PF leads to reduced intrahepatic distending pressure, resulting in the highly compliant hepatic vasculature passively expelling up to 50% of its blood volume, thus adding to venous return, cardiac output and HBF. Also activated immediately upon reduction of PF are the hepatic arterial buffer response and an HBF-dependent hepatorenal reflex. Adenosine is secreted at a constant rate into the small fluid space of Mall which surrounds the terminal branches of the hepatic arterioles, portal venules and sensory nerves. The concentration of adenosine is regulated by washout into the portal venules. Reduced PFreduces the washout and the accumulated adenosine causes dilation of the hepatic artery, thus buffering the PF change. Adenosine also activates hepatic sensory nerves to cause reflex renal fluid retention, thus increasing circulating blood volume and maintaining cardiac output and PF. If these mechanisms are not able to maintain total HBF, the hemodynamic imbalance results in hepatocyte proliferation, or apoptosis, by a shear stress/nitric oxide-dependent mechanism, to adjust total liver mass to match the blood supply. These mechanisms are specific to this unique vascular bed and provide an excellent example of multiple integrative regulation of a major homeostatic organ. [source] Human liver stem cell-derived microvesicles accelerate hepatic regeneration in hepatectomized ratsJOURNAL OF CELLULAR AND MOLECULAR MEDICINE, Issue 6b 2010M. B. Herrera Abstract Several studies indicate that adult stem cells may improve the recovery from acute tissue injury. It has been suggested that they may contribute to tissue regeneration by the release of paracrine factors promoting proliferation of tissue resident cells. However, the factors involved remain unknown. In the present study we found that microvesicles (MVs) derived from human liver stem cells (HLSC) induced in vitro proliferation and apoptosis resistance of human and rat hepatocytes. These effects required internalization of MVs in the hepatocytes by an ,4 -integrin-dependent mechanism. However, MVs pre-treated with RNase, even if internalized, were unable to induce hepatocyte proliferation and apoptosis resistance, suggesting an RNA-dependent effect. Microarray analysis and quantitative RT-PCR demonstrated that MVs were shuttling a specific subset of cellular mRNA, such as mRNA associated in the control of transcription, translation, proliferation and apoptosis. When administered in vivo, MVs accelerated the morphological and functional recovery of liver in a model of 70% hepatectomy in rats. This effect was associated with increase in hepatocyte proliferation and was abolished by RNase pre-treatment of MVs. Using human AGO2, as a reporter gene present in MVs, we found the expression of human AGO2 mRNA and protein in the liver of hepatectomized rats treated with MVs. These data suggested a translation of the MV shuttled mRNA into hepatocytes of treated rats. In conclusion, these results suggest that MVs derived from HLSC may activate a proliferative program in remnant hepatocytes after hepatectomy by a horizontal transfer of specific mRNA subsets. [source] Involvement of IQGAP3, a regulator of Ras/ERK-related cascade, in hepatocyte proliferation in mouse liver regeneration and development,JOURNAL OF CELLULAR PHYSIOLOGY, Issue 3 2009Koshi Kunimoto The spatio-temporal regulation of hepatocyte proliferation is a critical issue in liver regeneration. Here, in normal and regenerating liver as well as in developing liver, we examined its expression/localization of IQGAP3, which was most recently reported as a Ras/Rac/Cdc42-binding proliferation factor associated with cell,cell contacts in epithelial-type cells. In parallel, the expression/localization of Rac/Cdc42-binding IQGAP1/2 was examined. IQGAP3 showed a specific expression in proliferating hepatocytes positive for the proliferating marker Ki-67, the levels of expressions of mRNAs and proteins were significantly increased in hepatocytes in liver regeneration and development. In immunofluorescence, IQGAP3 was highly enriched at cell,cell contacts of hepatocytes. IQGAP1 and IQGAP2 were exclusively expressed in Kupffer and sinusoidal endothelial cells, respectively, in normal, regenerating, and developing liver. The expression of IQGAP1, but not of IQGAP2, was increased in CCl4 -induced (but not in partial hepatectomy-induced) liver regeneration. Exclusive expression/localization of IQGAP3 to hepatocytes in the liver likely reflects the specific involvement of the IQGAP3/Ras/ERK signaling cascade in hepatocyte proliferation in addition to the previously identified signaling pathways, possibly by integrating cell,cell contact-related proliferating signaling events. On the other hand, the Rac/Cdc42-binding properties of IQGAP1/2/3 may be related to the distinct modes of remodeling due to the different strategies which induced proliferation of liver cells; partial hepatectomy, CCl4 injury, or embryonic development. Thus, the functional orchestration of Ras and the Ras homologous (Rho) family proteins Rac/Cdc42 likely plays a critical role in liver regeneration and development. J. Cell. Physiol. 220: 621,631, 2009. © 2009 Wiley-Liss, Inc. [source] Survivin is upregulated during liver regeneration in rats and humans and is associated with hepatocyte proliferationLIVER INTERNATIONAL, Issue 4 2009Hideo A. Baba Abstract Background: Survivin regulates cell division and inhibits apoptosis. Liver regeneration is a complex process involving both proliferation and apoptosis. The role of survivin is not well elucidated and no data exist in humans. Methods: Seventy per cent liver resection was used to investigate liver regeneration in rats. Survivin was identified by means of reverse transcriptase polymerase chain reaction, Western blotting and immunohistochemistry. Proliferation and apoptosis were quantified. Liver biopsies from 33 patients who underwent living donor liver transplantation were used to study survivin immuno-expression, proliferation and apoptosis within the first 17 days after transplantation. Seven healthy donors served as controls. Results: Survivin transcript and protein were significantly upregulated in rat hepatocytes after 24,72 h during regeneration and showed a significant correlation with proliferation but not with apoptosis. In humans, survivin was nearly absent in donor and reperfused liver tissue but increased significantly 5,7 days after transplantation and correlated with proliferation but not with apoptosis. Conclusions: Survivin is upregulated in human and rodent liver regeneration and correlates with proliferation, suggesting an association of survivin and cell division. [source] A20 protects mice from lethal liver ischemia/reperfusion injury by increasing peroxisome proliferator-activated receptor-, expressionLIVER TRANSPLANTATION, Issue 11 2009Haley E. Ramsey The nuclear factor-,B inhibitory protein A20 demonstrates hepatoprotective abilities through combined antiapoptotic, anti-inflammatory, and pro-proliferative functions. Accordingly, overexpression of A20 in the liver protects mice from toxic hepatitis and lethal radical hepatectomy, whereas A20 knockout mice die prematurely from unfettered liver inflammation. The effect of A20 on oxidative liver damage, as seen in ischemia/reperfusion injury (IRI), is unknown. In this work, we evaluated the effects of A20 upon IRI using a mouse model of total hepatic ischemia. Hepatic overexpression of A20 was achieved by recombinant adenovirus (rAd.)-mediated gene transfer. Although only 10%-25% of control mice injected with saline or the control rAd., galactosidase survived IRI, the survival rate reached 67% in mice treated with rAd.A20. This significant survival advantage in rAd.A20-treated mice was associated with improved liver function, pathology, and repair potential. A20-treated mice had significantly lower bilirubin and aminotransferase levels, decreased hemorrhagic necrosis and steatosis, and increased hepatocyte proliferation. A20 protected against liver IRI by increasing hepatic expression of peroxisome proliferator-activated receptor alpha (PPAR,), a regulator of lipid homeostasis and of oxidative damage. A20-mediated protection of hepatocytes from hypoxia/reoxygenation and H2O2 -mediated necrosis was reverted by pretreatment with the PPAR, inhibitor MK886. In conclusion, we demonstrate that PPAR, is a novel target for A20 in hepatocytes, underscoring its novel protective effect against oxidative necrosis. By combining hepatocyte protection from necrosis and promotion of proliferation, A20-based therapies are well-poised to protect livers from IRI, especially in the context of small-for-size and steatotic liver grafts. Liver Transpl 15:1613,1621, 2009. © 2009 AASLD. [source] Auxiliary transplantation for acute liver failure: Histopathological study of native liver regenerationLIVER TRANSPLANTATION, Issue 10 2008Alberto Quaglia Auxiliary liver transplantation (ALT) permits the serial assessment of regeneration in livers of patients with acute liver failure (ALF). Forty-nine ALF patients [32 adults (median age, 23 years; range, 16-40 years) and 17 children (median age, 12 years; range, 1-15 years)] underwent ALT between 1994 and 2004 at King's College Hospital. Twenty-four patients had seronegative liver failure, 15 had acetaminophen toxicity, 4 had hepatitis B virus (HBV) infection, 3 had drug-induced liver failure, 2 had autoimmune hepatitis, and 1 had mushroom poisoning. Nine patients without post-ALT native liver histology were excluded from review. All acetaminophen-induced, HBV, and drug-related patients had diffuse injury. Twelve seronegative patients and the autoimmune hepatitis patient had a map-like injury. On follow-up, 9 acetaminophen-induced patients, 9 seronegative patients, 2 drug-induced ALF patients, 3 HBV patients, and the autoimmune patient recovered to a near-normal native liver with inconsequential scarring. The hepatocyte proliferative rate in diffuse necrosis was 27.4% (range, 3.1%-69.4%) at hepatectomy and sharply decreased after 8 days post-ALT, being minimal months and years after ALT. In conclusion, in patients undergoing ALT for ALF with a diffuse pattern of liver injury,mainly acetaminophen toxicity,hepatocyte proliferation occurs in the native liver within a few days of transplantation. If the injury is map-like (most cases of seronegative ALF), regeneration seems to involve variable hepatocellular proliferation and potential ductular hepatopoiesis, but sequential assessment is difficult because of sampling variation. The likelihood of histological recovery appears to be minimal in livers with total hepatocyte loss at the time of ALT. Liver Transpl 14:1437,1448, 2008. © 2008 AASLD. [source] Regulatory effects of senescence marker protein 30 on the proliferation of hepatocytesPATHOLOGY INTERNATIONAL, Issue 7 2001Terunobu Ishigami Senescence marker protein 30 (SMP 30) is preferentially expressed in the liver. One of its remarkable functions is the protection of cells against various injuries by enhancement of membrane calcium-pump activity. We analyzed the role of SMP 30 in hepatocyte proliferation. SMP 30 expression was decreased initially, then increased along with hepatic regeneration, after carbon tetrachloride (CCl4) administration. SMP 30 expression was decreased in the necrotic phase and then gradually increased. Its increase was slightly delayed just after the mitotic phase. These results lead us to speculate that mitoses of hepatic cells induce enhanced SMP 30 expression. In contrast, administration of lead nitrate (LN) as a hepatic mitogen induced a more stable increase of SMP 30 expression. To estimate the effect of SMP 30 on cell proliferation, we evaluated hepatic mitosis in wild-type and SMP 30-deficient knockout (KO) mice after CCl4 administration. We found an increase in mitotic numbers in hepatocytes of KO mice. This result suggests that SMP 30 has a suppressive effect on cell proliferation. Suppressive activity of SMP 30 cDNA was shown in cultured hepatoblastic cells. Our results suggest that SMP 30 performs a regulatory function in liver regeneration. [source] Effects of hepatic blood inflow occlusion on liver regeneration following partial hepatectomy in an experimental model of cirrhosisBRITISH JOURNAL OF SURGERY (NOW INCLUDES EUROPEAN JOURNAL OF SURGERY), Issue 11 2000X. -Y. Background Hepatic blood inflow occlusion during hepatectomy may influence postoperative liver regeneration. The aim of this study was to investigate the influence of hepatic blood inflow occlusion on liver regeneration following partial hepatectomy in thioacetamide-induced cirrhotic rats. Methods Forty-three cirrhotic Wistar,Furth rats were randomly assigned to three groups. Rats in group 1 underwent 64 per cent hepatectomy alone, those in group 2 were subjected to 15 min hepatic blood inflow occlusion followed by 64 per cent hepatectomy, and animals in group 3 were subjected to 30 min inflow occlusion followed by 64 per cent hepatectomy. Liver function, 5-bromo-2,-deoxyuridine (BrdU) labelling index and percentage of initial liver weight on days 1, 2 and 7 posthepatectomy were assessed. Results Rats in groups 1 and 2 had a significantly higher serum albumin level and a markedly lower alanine aminotransferase level than animals in group 3 on day 1 posthepatectomy (P < 0·05). There was no significant difference in the serum level of total bilirubin of the three groups on days 1, 2 and 7. The BrdU labelling index was significantly higher in groups 1 and 2 than in group 3 animals on day 1 posthepatectomy (P < 0·01 and P < 0·05 respectively). Percentages of initial liver weight were similar in groups 1, 2 and 3 on days 1, 2 and 7 after hepatectomy. Conclusion Hepatic blood inflow occlusion for up to 30 min suppressed DNA synthesis and hepatocyte proliferation at an early posthepatectomy stage and consequently delayed recovery of liver function in cirrhotic rats. However, it did not affect restoration of liver mass or survival after 64 per cent hepatectomy. © 2000 British Journal of Surgery Society Ltd [source] CDK2 regulation through PI3K and CDK4 is necessary for cell cycle progression of primary rat hepatocytesCELL PROLIFERATION, Issue 4 2007L. Wierød In response to mitogenic stimuli, CDK4 and CDK2 form complexes with cyclins D and E, respectively, and translocate to the nucleus in the late G1 phase. It is an on-going discussion whether mammalian cells need both CDK4 and CDK2 kinase activities for induction of S phase. Methods and results: In this study, we have explored the role of CDK4 activity during G1 progression of primary rat hepatocytes. We found that CDK4 activity was restricted by either inhibiting growth factor induced cyclin D1-induction with the PI3K inhibitor LY294002, or by transient transfection with a dominant negative CDK4 mutant. In both cases, we observed reduced CDK2 nuclear translocation and reduced CDK2-Thr160 phosphorylation. Furthermore, reduced pRb hyperphosphorylation and reduced cellular proliferation were observed. Ectopic expression of cyclin D1 alone was not sufficient to induce CDK4 nuclear translocation, CDK2 activity or cell proliferation. Conclusions: Thus, epidermal growth factor-induced CDK4 activity was necessary for CDK2 activation and for hepatocyte proliferation. These results also suggest that, in addition to regulating cyclin D1 expression, PI3K is involved in regulation of nuclear shuttling of cyclin-CDK complexes in G1 phase. [source] Hepatic proliferation in Gunn rats transplanted with hepatocytes: effect of retrorsine and tri-iodothyronineCELL PROLIFERATION, Issue 3 2005F. J. Cubero However, a major problem in most transplantation studies to date has been the limited growth of transplanted cells in the recipient organ. We performed a strategy for selective proliferation of transplanted cells by interfering with the proliferative capacity of resident hepatocytes, using the pyrrolizidine alkaloid retrorsine and then transplanting liver cells in conjunction with repeated administration of triiodothyronine, an inducer of hepatocyte proliferation in rats. In the present study, foetal and adult syngeneic hepatocyte transplantation into spleen was performed in retrorsine-treated hyperbilirubinemic Gunn rats. In parallel, repeated injections of triiodothyronine were given to recipients. Rats were sacrificed at 1, 7, 30 and 90 days after transplantation and blood and bile samples were taken to assess the functionality of transplanted cells. The proliferative activity of transplanted hepatocytes was evaluated using proliferating cell nuclear antigen labelling index. In summary, both adult and foetal hepatocyte transplantation were effective in correcting a metabolic abnormality in Gunn rats for as long as 3 months. The RS/T3 model, as a measure to increase graft function, could represent an important advance to future clinical application of hepatocyte transplantation. [source] Nonregenerative stimulation of hepatocyte proliferation in the rat: Variable effects in relation to spontaneous liver growth; a possible link with metabolic inductionCELL PROLIFERATION, Issue 5 2000C. Nadal Three procedures were used to stimulate hepatocyte proliferation in the rat without reducing liver mass, resulting in a supplementary growth which differs from the regenerative growth observed after loss of liver mass by hepatectomy or toxic necrosis. They were: (a) the ingestion of cyproterone, a cytochrome P450 inducing drug (b) the injection of an irritant which provokes glycogenesis and synthesis of acute-phase proteins (c) the injection of albumin-bound bilirubin leading to elimination of glucuronated bilirubin in bile. This ensuing supplementary growth was studied in the rat under several conditions of hepatic proliferation: 1In normal adult rats, in which hepatocyte proliferation is very low, the effect on proliferation was either weak or undetectable. 2In suckling rats, with a rapid body and liver growth, all the stimulants provoked a synchronized wave of proliferation with a steep increase of the percentage of S-phase hepatocytes from 4.5% in controls to 15,30% in treated rats. This increase was followed by a compensatory period of low proliferation during which a treatment with a second stimulant was much less effective. 3In 2/3 hepatectomized adult rats, the proliferation induced by cyproterone was higher than the spontaneous regenerative proliferation alone and additional to it during all of the regenerative process. The proliferation induced by acute inflammation was competitive with the synchronous spontaneous proliferation during the early period of synchronized proliferation following surgery, suggesting that both are similar acute responses. Differently, during the late period of lower and unsynchronized regenerative proliferation, the proliferation provoked by acute inflammation was additional to the spontaneous one. A stimulation of proliferation by injection of the albumin-bilirubin complex was observed during the late period after 2/3 hepatectomy. The highest level of stimulation occurred when the liver growth and the hepatocyte proliferation were already high. This suggests that these stimulants are not complete mitogenic stimuli and need cofactors which are present during the spontaneous growth or, alternatively, that the effect of stimulants is opposed by an inhibitory mechanism present in the adult rat. [source] Adenosine reverses a preestablished CCl4 -induced micronodular cirrhosis through enhancing collagenolytic activity and stimulating hepatocyte cell proliferation in ratsHEPATOLOGY, Issue 4 2001Rolando Hernández-Muñoz Cirrhosis is one of the most common causes of mortality worldwide, because hepatic dysfunction constitutes a potentially lethal condition. Having demonstrated the hepatoprotective effect of adenosine against CCl4 -induced cirrhosis, the present study was aimed at assessing adenosine's effect on an already-established micronodular cirrhosis. Chronic administration of CCl4 (10 weeks) induced a cirrhotic state, characterized by increased liver fibronectin and collagen types I and III content, enhanced expression of ,-1 (I) collagen mRNA, portal hypertension, and liver dysfunction. After CCl4 discontinuation (5 weeks), increased persitance of ,-1 (I) collagen mRNA expression and deposition, enhanced proline incorporation into collagen and prolyl hydroxylase activity evidenced active fibrogenesis. Several weeks after CCl4 withdrawal, deposited collagen showed an enhanced type I/III ratio, which was associated with deficient collagenolytic activity in cirrhotic livers. Liver expression of some metalloproteinases (MMPs) and of tissue inhibitors of MMPs (TIMPs) also indicated decreased collagen breakdown in cirrhotic livers. Parameters indicative of oxidative stress (mainly protein oxidation) were persistently augmented. These events were coincident with diminished regenerative capacity of the cirrhotic liver. Intraperitoneal adenosine administration to CCl4 -induced cirrhotic rats blocked active fibrogenesis and increased the collagen degradation (most probably by decreasing liver TIMPs levels), normalizing collagen-type ratios. In addition, the nucleoside promoted an effective hepatocyte's proliferation in the cirrhotic liver and accelerated normalization of parameters indicative of liver function and oxidative stress. Thus, adenosine readily reversed an experimental cirrhosis through stimulating liver collagenolytic and proliferative capacities, as well as by accelerating functional recovery. [source] |