Home About us Contact | |||
Hepatic Stem Cells (hepatic + stem_cell)
Selected AbstractsOval cell proliferation in p16INK4a expressing mouse liver is triggered by chronic growth stimuliJOURNAL OF CELLULAR AND MOLECULAR MEDICINE, Issue 2 2008Elke Ueberham Abstract Terminal differentiation requires molecules also involved in aging such as the cell cycle inhibitor p16INK4a.Like other organs, the adult liver represents a quiescent organ with terminal differentiated cells, hepatocytes and cholangiocytes. These cells retain the ability to proliferate in response to liver injury or reduction of liver mass. However, under conditions which prevent mitotic activation of hepatocytes, regeneration can occur instead from facultative hepatic stem cells. For therapeutic application a non-toxic activation of this stem cell compartment is required. We have established transgenic mice with conditional overexpression of the cell cycle inhibitor p16INK4a in hepatocytes and have provoked and examined oval cell activation in adult liver in response to a range of proliferative stimuli. We could show that the liver specific expression of p16INK4a leads to a faster differentiation of hepatocytes and an activation of oval cells already in postnatal mice without negative consequences on liver function. [source] Lack of evidence that bone marrow cells contribute to cholangiocyte repopulation during experimental cholestatic ductal hyperplasiaLIVER INTERNATIONAL, Issue 4 2006Yuki Moritoki Abstract: Background: Ductopenia is observed in end-stage human cholestatic diseases. The limited capability of cholangiocytes for proliferation is suggested to be the principal reason. Recently, bone marrow cells (BMCs) have been reported to behave as hepatic stem cells; however, their capability to differentiate into cholangiocytes in cholestasis remains unclear. Methods: Normal mice were lethally irradiated to suppress the proliferation of self-BMCs; thereafter, the BMCs from enhanced green fluorescent protein (EGFP)-transgenic mice were transferred to recipients. Chronic cholestasis was induced by 0.1%,-naphtylisothiocyanate (ANIT) feeding. The proliferation of cholangiocytes and oval cells was assessed morphologically and immunohistchemically (cytokeratin-7 (CK-7), A6). Proliferative activity (proliferating cell nuclear antigen (PCNA) protein expression), hepatic growth factor (HGF) receptor (c-Met), stem cell factor receptor (c-kit), Notch2 and Hes1 expression were also evaluated. Results: Marked cholangiocyte proliferation was observed in ANIT-fed mice. However, no EGFP/CK-7 double positive cells were identified in any of the liver specimens after BMCs transfer (Tx). In hepatic parenchyma, there were scattered EGFP-positive cells, although none of them were positive for CK-7. Conclusions: In spite of the significant ductular proliferations after ANIT feeding, no EGFP-positive cholangiocytes were confirmed by any other means in this chronic cholestasis model. Thus, different from hepatocytes, BMCs Tx seems not to contribute to the differentiation of cholangiocytes. Future studies are feasible to clarify the origin of proliferative cholangiocytes observed in this chronic cholestatic ductular hyperplasia model. [source] Stem cell therapy of the liver, Fusion or fiction?LIVER TRANSPLANTATION, Issue 4 2004Marc H. Dahlke Various stem cell populations have been described in distinct models of liver regeneration. This review provides an overview of these different stem cell populations aimed at unifying diverse views of liver stem cell biology. Embryonic stem cells, hemopoietic stem cells, mesenchymal stem cells, liver-derived hepatic stem cells, bone marrow,derived hepatic stem cells, and mature hepatocytes (as cells with stemlike properties) are considered separately. In so doing, we seek to clarify the nomenclature of putative liver stem cell types. Experiments that address the question of cellular fusion versus transdifferentiation as explanations for observed liver regeneration are highlighted. This review concludes with a series of open questions that should be addressed in the context of clinical liver disease before attempts at human therapeutic interventions. (Liver Transpl 2004;10:471,479.) [source] Hepatomegaly in transgenic mice expressing the homeobox gene Cux-1MOLECULAR CARCINOGENESIS, Issue 1 2005Gregory B. Vanden Heuvel Abstract Cux-1 is a member of a family of homeobox genes structurally related to Drosophila Cut. Mammalian Cut proteins function as transcriptional repressors of genes specifying terminal differentiation in multiple cell lineages. In addition, mammalian Cut proteins serve as cell-cycle-dependent transcriptional factors in proliferating cells, where they function to repress expression of the cyclin kinase inhibitors p21 and p27. Previously we showed that transgenic mice expressing Cux-1 under control of the CMV immediate early gene promoter develop multiorgan hyperplasia. Here we show that mice constitutively expressing Cux-1 exhibit hepatomegaly correlating with an increase in cell proliferation. In addition, the increase in Cux-1 expression in transgenic livers was associated with a decrease in p21, but not p27, expression. Within transgenic livers, Cux-1 was ectopically expressed in a population of small cells, but not in mature hepatocytes, and many of these small cells expressed markers of proliferation. Transgenic livers showed an increase in ,-smooth muscle actin, indicating activation of hepatic stellate cells, and an increase in cells expressing chromogranin-A, a marker for hepatocyte precursor cells. Morphological analysis of transgenic livers revealed inflammation, hepatocyte swelling, mixed cell foci, and biliary cell hyperplasia. These results suggest that increased expression of Cux-1 may play a role in the activation of hepatic stem cells, possibly through the repression of the cyclin kinase inhibitor p21. © 2005 Wiley-Liss, Inc. [source] |