Home About us Contact | |||
Hepatic I/R Injury (hepatic + r_injury)
Selected AbstractsCritical role of acidic sphingomyelinase in murine hepatic ischemia-reperfusion injury,HEPATOLOGY, Issue 3 2006Laura Llacuna The molecular mechanisms of hepatic ischemia/reperfusion (I/R) damage are incompletely understood. We investigated the role of ceramide in a murine model of warm hepatic I/R injury. This sphingolipid induces cell death and participates in tumor necrosis factor (TNF) signaling. Hepatic ceramide levels transiently increased after the reperfusion phase of the ischemic liver in mice, because of an early activation of acidic sphingomyelinase (ASMase) followed by acid ceramidase stimulation. In vivo administration of an ASMase inhibitor, imipramine, or ASMase knockdown by siRNA decreased ceramide generation during I/R, and attenuated serum ALT levels, hepatocellular necrosis, cytochrome c release, and caspase-3 activation. ASMase-induced ceramide generation activated JNK resulting in BimL phosphorylation and translocation to mitochondria, as the inhibition of ASMase by imipramine prevented these events. In contrast, blockade of ceramide catabolism by N-oleyolethanolamine (NOE), a ceramidase inhibitor, enhanced ceramide levels and potentiated I/R injury compared with vehicle-treated mice. Pentoxifylline treatment prevented TNF upregulation and ASMase activation. Furthermore, 9 of 11 mice treated with imipramine survived 7 days after total liver ischemia, compared with 4 of 12 vehicle-treated mice, whereas 8 of 8 NOE-treated mice died within 2 days of total liver ischemia. In conclusion, ceramide generated from ASMase plays a key role in I/R-induced liver damage, and its modulation may be of therapeutic relevance. (HEPATOLOGY 2006.) [source] Ischemic preconditioning of the murine liver protects through the Akt kinase pathway,HEPATOLOGY, Issue 3 2006Kunihiko Izuishi Hepatic ischemia-reperfusion (I/R) injury occurs in the settings of transplantation, trauma, and elective liver resection. Ischemic preconditioning has been used as a strategy to reduce inflammation and organ damage from I/R of the liver. However, the mechanisms involved in this process are poorly understood. We examined the role of the phosphatidylinositol 3 (PI3) kinase/Akt-signaling pathway during hepatic ischemic preconditioning (IPC). Prior to a prolonged warm ischemic insult, BALB/c mice were subjected to a 20-minute IPC period consisting of 10 minutes of ischemia and 10 minutes of reperfusion. Mice undergoing IPC demonstrated a significantly greater level and earlier activation of Akt in the liver compared with control animals. IPC also resulted in markedly less hepatocellular injury and improved survival compared with control animals. Akt activation associated with hepatic IPC suppressed the activity of several modulators of apoptosis, including Bad, glycogen synthase kinase ,, and caspase-3. In addition, IPC also inhibited the activities of c-Jun N -terminal kinase and nuclear factor ,B after I/R. Pretreatment of mice with PI3 kinase inhibitors completely abolished Akt phosphorylation and the protective effects seen with IPC. In conclusion, these results indicate that the PI3 kinase/Akt pathway plays an essential role in the protective effects of IPC in hepatic I/R injury. Modulation of this pathway may be a potential strategy in clinical settings of ischemic liver injury to decrease organ damage. Supplementary material for this article can be found on the HEPATOLOGY website (http://interscience.wiley.com/jpages/0270-9139/suppmat/index.html). (HEPATOLOGY 2006;44:573,580.) [source] Ischemic preconditioning affects interleukin release in fatty livers of rats undergoing ischemia/reperfusionHEPATOLOGY, Issue 3 2004Anna Serafín The present study evaluates the effect of ischemic preconditioning on interleukin-1 (IL-1) and interleukin-10 (IL-10) generation following hepatic ischemia/reperfusion (I/R) in normal and steatotic livers as well as the role of nitric oxide (NO) in this process. Increased IL-1, and IL-10 levels were observed in normal livers after I/R. Steatotic livers showed higher IL-1, levels than normal livers, and IL-10 at control levels. The injurious role of IL-1, and the benefits of IL-10 on hepatic I/R injury was shown with the use of IL-1 receptor antagonist (IL-1ra), anti-IL-10 polyclonal antibody against IL-10 (anti-IL-10) and exogenous IL-10. The effective dose of these treatments was different in both types of livers. Preconditioning prevented IL-1, release and increased IL-10 generation after I/R in normal and steatotic livers. IL-1, or anti-IL-10 pretreatments reversed the benefits of preconditioning. IL-1, action inhibition in a preconditioned group that was pretreated with anti-IL-10 did not modify the benefits of preconditioning. In addition, anti-IL-10 pretreatment in the preconditioned group resulted in IL-1, levels comparable to those observed after I/R. NO inhibition eliminated the benefits of preconditioning on IL-10 release, IL-1, levels, and hepatic injury. In conclusion, preconditioning, through IL-10 overproduction, inhibits IL-1, release and the ensuing hepatic I/R injury in normal and steatotic livers. IL-10 generation induced by preconditioning could be mediated by NO. (HEPATOLOGY 2004;39:688,698.) [source] Stat4 and Stat6 signaling in hepatic ischemia/reperfusion injury in mice: HO-1 dependence of Stat4 disruption-mediated cytoprotectionHEPATOLOGY, Issue 2 2003Xiu-Da Shen Ischemia/reperfusion (I/R) injury remains an important problem in clinical organ transplantation. There is growing evidence that T lymphocytes, and activated CD4+ T cells in particular, play a key role in hepatic I/R injury. This study analyzes the role of signal transducer and activator of transcription 4 (Stat4) and Stat6 signaling in liver I/R injury. Using a partial lobar warm ischemia model, groups of wild-type (WT), T cell,deficient, Stat4-/Stat6-deficient knockout (KO) mice were assessed for the extent/severity of I/R injury. Ninety minutes of warm ischemia followed by 6 hours of reperfusion induced a fulminant liver failure in WT and Stat6 KO mice, as assessed by hepatocellular damage (serum alanine aminotransferase [sALT] levels), neutrophil accumulation (myeloperoxidase [MPO] activity) and histology (Suzuki scores). In contrast, T cell deficiency (nu/nu mice) or disruption of Stat4 signaling (Stat4 KO mice) reduced I/R insult. Unlike adoptive transfer of WT or Stat6-deficient T cells, infusion of Stat4-deficient T cells failed to restore hepatic I/R injury and prevented tumor necrosis factor , (TNF-,) production in nu/nu mice. Diminished TNF-,/Th1-type cytokine messenger RNA (mRNA)/protein elaborations patterns, along with overexpression of heme oxygenase-1 (HO-1),accompanied hepatic cytoprotection in Stat4 KO recipients. In contrast, HO-1 depression restored hepatic injury in otherwise I/R resistant Stat4 KOs. In conclusion, Stat4 signaling is required for, whereas Stat4 disruption protects against, warm hepatic I/R injury in mice. The cytoprotection rendered by Stat4 disruption remains HO-1,dependent. [source] Cholestasis enhances liver ischemia/reperfusion-induced coagulation activation in ratsHEPATOLOGY RESEARCH, Issue 2 2010Jaap J. Kloek Aim:, Cholestasis is associated with increased morbidity and mortality in patients undergoing major liver surgery. An additional risk is induced when vascular inflow occlusion is applied giving rise to liver ischemia/reperfusion (I/R) injury. The role of the coagulation system in this type of injury is elusive. The aim of the current study was to assess activation of coagulation following hepatic I/R injury in cholestatic rats. Methods:, Male Wistar rats were randomized into two groups and subjected to bile duct ligation (BDL) or sham laparotomy. After 7 days, both groups underwent 30 min partial liver ischemia. Animals were sacrificed before ischemia or after 6 h, 24 h, and 48 h reperfusion. Results:, Plasma AST and ALT levels were higher after I/R in cholestatic rats (P < 0.05). Hepatic necrosis, liver wet/dry ratio and neutrophil influx were increased in the BDL group up to 48 h reperfusion (P < 0.05). Liver synthetic function was decreased in the BDL group as reflected by prolonged prothrombin time after 6 h and 24 h reperfusion (P < 0.05). I/R in cholestatic rats resulted in a 12-fold vs. 7-fold (P < 0.01) increase in markers for thrombin generation and a 6-fold vs. 2-fold (P < 0.01) increase in fibrin degradation products (BDL vs. control, respectively). In addition, the cholestatic rats exhibited significantly decreased levels of antithrombin (AT) III and increased levels of the fibrinolytic inhibitor plasminogen activator inhibitor (PAI-1) during reperfusion. Conclusions:, Cholestasis significantly enhances I/R-induced hepatic damage and inflammation that concurs with an increased activation of coagulation and fibrinolysis. [source] Current studies on therapeutic approaches for ischemia/reperfusion injury in steatotic liversHEPATOLOGY RESEARCH, Issue 9 2008Chengfu Xu Steatotic livers are particularly vulnerable to ischemia/reperfusion (I/R) injury, resulting in poor outcomes following liver surgery and transplantation. Therapeutic approaches for I/R injury in steatotic livers are currently under intensive investigation. This review summarizes and discusses the approaches developed during the last few years to prevent hepatic I/R injury in steatotic livers. Among the proposed approaches, ischemic preconditioning and intermittent clamping are the two most promising approaches that have been applied in some clinical centers for liver surgery and transplantation, but most of others have not reached clinical application yet. [source] Roles of nuclear factor-,B in postischemic liverHEPATOLOGY RESEARCH, Issue 5 2008Thomas Shin Hepatic ischemia/reperfusion (I/R) results in a chain of events that culminate in liver dysfunction and injury. I/R injury is characterized by early oxidant stress followed by an intense acute inflammatory response that involves the transcription factor nuclear factor (NF)-,B. In addition to being a primary regulator of pro-inflammatory gene expression, NF-,B may play other roles in the hepatic response to I/R, such as mediating the expression of anti-apoptotic genes, preventing the accumulation of damaging reactive oxygen species, facilitating liver regeneration, and mediating the protective effects of ischemic preconditioning. In the present study, we review the diverse functions of NF-,B during hepatic I/R injury. [source] Liver graft exposure to carbon monoxide during cold storage protects sinusoidal endothelial cells and ameliorates reperfusion injury in ratsLIVER TRANSPLANTATION, Issue 11 2009Atsushi Ikeda Hepatic ischemia/reperfusion (I/R) injury significantly influences short-term and long-term outcomes after liver transplantation (LTx). The critical step initiating the injury is known to include sinusoidal endothelial cell (SEC) alteration during the cold preservation period. As carbon monoxide (CO) has potent cytoprotective functions on vascular endothelial cells, this study examined if CO treatment of excised liver grafts during cold storage could protect SECs and ameliorate hepatic I/R injury. Rat liver grafts were preserved in University of Wisconsin (UW) solution containing 5% CO (CO-UW solution) for 18 to 24 hours and were transplanted into syngeneic Lewis rats. After 18 hours of cold preservation, SEC damage was evident with propidium iodide (PI) nuclear staining on SECs, and the frequency of PI+ SECs was significantly lower in grafts stored in CO-UW solution versus those stored in control UW solution. SEC protection with CO was associated with decreased intercellular cell adhesion molecule translocation and less matrix metalloproteinase release during cold preservation. After LTx with 18 hours of cold preservation, serum alanine aminotransferase levels and hepatic necrosis were significantly less in the CO-UW group than in the control UW group. With 24 hours of cold storage, 35% (7/20) survived with control UW solution, whereas the survival with CO-UW solution improved to 80% (8/10). These beneficial effects of CO-UW solution were associated with a significant reduction of neutrophil extravasation, down-regulation of hepatic messenger RNA for tumor necrosis factor alpha and intercellular cell adhesion molecule 1, and less hepatic extracellular signal-regulated kinase activation. Liver grafts from Kupffer cell,depleted donors or pseudogerm-free donors showed less SEC death during cold preservation, and CO-UW solution further reduced SEC death. In conclusion, CO delivery to excised liver grafts during cold preservation efficiently ameliorates SEC damage and hepatic I/R injury. Liver Transpl 15:1458,1468, 2009. © 2009 AASLD. [source] Inhibition of Matrix Metalloproteinase-9 Attenuates Acute Small-for-Size Liver Graft Injury in RatsAMERICAN JOURNAL OF TRANSPLANTATION, Issue 4 2010Z. Y. Ma Ischemia/reperfusion (I/R) and portal hypertension have been implicated in small-for-size liver graft dysfunction. Matrix metalloproteinases-2 and -9 (MMP-2/9) are critically proposed to involve in hepatic I/R injury and activated by hemodynamic force. We hypothesized that MMP-2/9 overexpression played a crucial role in acute graft injury following small-for-size liver transplantation (LT). Rats were randomly assigned into four groups: 75% partial hepatectomy (PH); 100% LT; 25% LT and 25% LT treated with CTT peptide (MMP-2/9 inhibitor). ELISA, real-time PCR, gelatin zymography and immunohistochemistry were used to determine the expression pattern of MMP-2/9 in liver tissue. MMP-9 expression was significantly increased 6 h after reperfusion and reached a peak 12 h in the 25% LT group, whereas MMP-2 was expressed in all groups invariably. Compared with the 25% LT group, rats from CTT-treated group exhibited markedly decreased alanine aminotransferase and total bilirubin values, downregulated proinflammatory cytokines, attenuated malondialdehyde (MDA) and myeloperoxidase (MPO) activities, and improved liver histology. Likewise, MMP-9 inhibition significantly reduced number of TUNEL-positive cells and caspase-3 activity, along with decreased protein levels of Fas and Fas-L. Specifically, rat survival was also improved in the CTT-treated group. These results support critical function of MMP-9 involved in acute small-for-size livergraft injury. [source] |