Hepatic Microcirculation (hepatic + microcirculation)

Distribution by Scientific Domains


Selected Abstracts


Impairment of Hepatic Microcirculation in Fatty Liver

MICROCIRCULATION, Issue 6 2003
SAMIA IJAZ
ABSTRACT Fatty liver or hepatic steatosis, which is the result of the abnormal accumulation of triacylglycerol within the cytoplasm of hepatocytes, is a common histological finding in human liver biopsy specimens that is attributed to the effects of alcohol excess, obesity, diabetes, or drugs. There is a general consensus that fatty liver compromises hepatic microcirculation, the common exchange network upon which hepatic arterial and portal inflows converge, regardless of underlying etiology. A significant reduction in hepatic microcirculation has been observed in human fatty donor livers and in experimental models of hepatic steatosis. There is an inverse correlation between the degree of fat infiltration and both total hepatic blood flow and flow in microcirculation. Fatty accumulation in the cytoplasm of the hepatocytes is associated with an increase in the cell volume that reduces the size of the hepatic sinusoid space by 50% compared with a normal liver and may result in partial or complete obstruction of the hepatic sinusoid space. As a result of impaired hepatic microcirculation, the hepatocytes of the fatty liver have reduced tolerance against ischemia-reperfusion injury, which affects about 25% of the donors for liver transplantation because severe steatosis is associated with a high risk of primary nonfunction after liver transplantation. [source]


Hepatic arterial flow becomes the primary supply of sinusoids following partial portal vein ligation in rats

JOURNAL OF GASTROENTEROLOGY AND HEPATOLOGY, Issue 10 2006
Yukihiro Yokoyama
Abstract Background and Aim:, Partial portal vein ligation (PPVL) is a commonly used procedure to induce prehepatic portal hypertension in animal models. The aim of this study was to test the hypothesis that the hepatic arterial flow becomes the primary source feeding the sinusoids in the liver after PPVL. Methods:, Sprague,Dawley rats underwent either sham operation or partial portal vein ligation (PPVL). The number of vessels in the liver at 2 weeks postoperatively was determined by factor VIII immunolocalization and the gene expression of angiogenic factors was assessed by RT-PCR. The total hepatic arterial supply to the liver was measured using the fluorescent microsphere injection technique. To further test the hypothesis, two additional groups of rats underwent hepatic artery ligation (HAL) or PPVL plus HAL (PPHAL). The integrity of hepatic microcirculation was then evaluated in all four groups by intravital microscopy. Results:, At 2 weeks after operation, the number of vessels detected by factor VIII staining was significantly higher in PPVL compared to sham. Densitometric analysis of RT-PCR bands revealed a significant increase of vascular endothelial growth factor gene expression in PPVL compared to sham. Arterial flow to the liver measured by fluorescent microspheres was increased by 190% in PPVL compared to sham. When all four groups were compared, no prominent histological abnormality was observed in sham, HAL, and PPVL groups; however, PPHAL livers showed focal necrosis and inflammatory cell infiltration around the portal triads. Additionally, only the PPHAL livers showed a decreased sinusoidal diameter and significantly lower perfusion index (PPHAL 42.9 ± 6.1; sham 85.7 ± 7.0, PPVL 80.2 ± 6.5, HAL 70.9 ± 4.5). Conclusions:, These results suggest that the hepatic artery flow becomes the primary source for the blood supply of sinusoids and the compensatory change in the hepatic arterial system plays a critical role in maintaining microcirculatory perfusion following the restriction of the portal vein flow by PPVL. [source]


The cytoprotective effects of addition of activated protein C into preservation solution on small-for-size grafts in rats

LIVER TRANSPLANTATION, Issue 1 2010
Naohisa Kuriyama
Small-for-size liver grafts are a serious obstacle for partial orthotopic liver transplantation. Activated protein C (APC), a potent anticoagulant serine protease, is known to have cell-protective properties due to its anti-inflammatory and antiapoptotic activities. This study was designed to examine the cytoprotective effects of a preservation solution containing APC on small-for-size liver grafts, with special attention paid to ischemia-reperfusion injury and shear stress in rats. APC exerted cytoprotective effects, as evidenced by (1) increased 7-day graft survival; (2) decreased initial portal pressure and improved hepatic microcirculation; (3) decreased levels of aminotransferase and improved histological features of hepatic ischemia-reperfusion injury; (4) suppressed infiltration of neutrophils and monocytes/macrophages; (5) reduced hepatic expression of tumor necrosis factor , and interleukin 6; (6) decreased serum levels of hyaluronic acid, which indicated attenuation of sinusoidal endothelial cell injury; (7) increased hepatic levels of nitric oxide via up-regulated hepatic endothelial nitric oxide synthesis expression together with down-regulated hepatic inducible nitric oxide synthase expression; (8) decreased hepatic levels of endothelin 1; and (9) reduced hepatocellular apoptosis by down-regulated caspase-8 and caspase-3 activities. These results suggest that a preservation solution containing APC is a potential novel and safe product for small-for-size liver transplantation, alleviating graft injury via anti-inflammatory and antiapoptotic effects and vasorelaxing conditions. Liver Transpl 16:1,11, 2010. © 2009 AASLD. [source]


Ischemic preconditioning and intermittent clamping improve murine hepatic microcirculation and Kupffer cell function after ischemic injury

LIVER TRANSPLANTATION, Issue 4 2004
Katarína Vajdová
The aim of this study was to evaluate whether the protective effect of intermittent clamping and ischemic preconditioning is related to an improved hepatic microcirculation after ischemia/reperfusion injury. Male C57BL/6 mice were subjected to 75 or 120 min of hepatic ischemia and 1 or 3 hours of reperfusion. The effects of continuous ischemia, intermittent clamping, and ischemic preconditioning before prolonged ischemia on sinusoidal perfusion, leukocyte-endothelial interactions, and Kupffer cell phagocytic activity were analyzed by intravital fluorescence microscopy. Kupffer cell activation was measured by tissue levels of tumor necrosis factor (TNF)-,, and the integrity of sinusoidal endothelial cells and Kupffer cells were evaluated by electron microscopy. Continuous ischemia resulted in decreased sinusoidal perfusion rate and phagocytic activity of Kupffer cell, increased leukocyte-endothelial interactions and TNF-, levels. Both protective strategies improved sinusoidal perfusion, leukocyte-endothelial interactions and phagocytic activity of Kupffer cells after 75-minutes of ischemia, and intermittent clamping also after 120 minutes ischemia. TNF-, release was significantly reduced and sinusoidal wall integrity was preserved by both protective procedures. In conclusion, both strategies are protective against ischemia/reperfusion injury by maintaining hepatic microcirculation and decreasing Kupffer cell activation for clinically relevant ischemic periods, and intermittent clamping appears superior for prolonged ischemia. (Liver Transpl 2004;10:520,528.) [source]


Impairment of Hepatic Microcirculation in Fatty Liver

MICROCIRCULATION, Issue 6 2003
SAMIA IJAZ
ABSTRACT Fatty liver or hepatic steatosis, which is the result of the abnormal accumulation of triacylglycerol within the cytoplasm of hepatocytes, is a common histological finding in human liver biopsy specimens that is attributed to the effects of alcohol excess, obesity, diabetes, or drugs. There is a general consensus that fatty liver compromises hepatic microcirculation, the common exchange network upon which hepatic arterial and portal inflows converge, regardless of underlying etiology. A significant reduction in hepatic microcirculation has been observed in human fatty donor livers and in experimental models of hepatic steatosis. There is an inverse correlation between the degree of fat infiltration and both total hepatic blood flow and flow in microcirculation. Fatty accumulation in the cytoplasm of the hepatocytes is associated with an increase in the cell volume that reduces the size of the hepatic sinusoid space by 50% compared with a normal liver and may result in partial or complete obstruction of the hepatic sinusoid space. As a result of impaired hepatic microcirculation, the hepatocytes of the fatty liver have reduced tolerance against ischemia-reperfusion injury, which affects about 25% of the donors for liver transplantation because severe steatosis is associated with a high risk of primary nonfunction after liver transplantation. [source]


Role of Nitric Oxide in the Development of Distant Metastasis From Squamous Cell Carcinoma,

THE LARYNGOSCOPE, Issue 2 2007
Richard L. Scher MD
Abstract Background: Metastasis, the dissemination of malignant cells to distant sites, remains one of the most significant factors responsible for death from cancer. Recent studies have shown some improvement in the rate of distant metastasis (DM) with the addition of chemotherapy to surgery and radiation for treatment of head and neck squamous cell carcinoma (HNSCC). However, diagnosis and treatment at an early stage ultimately leads to a better prognosis. The prediction of which patients will develop metastasis and the selection of treatment most effective at preventing and treating metastasis remains dependent on an incomplete understanding of prognostic factors and the biological and molecular basis for metastatic development. This study was undertaken using an in vivo model to investigate the possible role of nitric oxide (NO) in the development of metastasis from HNSCC. The findings will result in better understanding of the metastatic process for HNSCC, with the potential to develop and implement therapies that could prevent and treat metastasis in patients. Objectives/Hypothesis: 1) To analyze whether in vivo videomicroscopy (IVVM) is useful for the study of DM from squamous cell carcinoma of the head and neck; 2) with use of IVVM, investigate the effect of the biological mediators NO and interleukin (IL)-1 on the adhesion of circulating human HNSCC cells in the hepatic microcirculation. Study Design: Prospective study using an animal model. Methods: Phase 1: athymic nude rats and mice were used for IVVM experiments. The cremaster muscle and liver, used as arterial and venous flow models, were tested to determine whether IVVM was useful for the study of human HNSCC interactions with the microcirculation. A human squamous cell carcinoma cell line (FaDu) labeled with the intracytoplasmic fluorescent marker BCECF-am. was used for all experiments. Videomicroscopic images of FaDu cells in the microcirculation were analyzed for cell adhesion, morphology, deformation, circulation, location of adhesion within the microcirculation, and alteration of microvascular circulation. Phase 2: the effect of IL-1, NO, and NO inhibitors on HNSCC cell adhesion in the hepatic microcirculation of nude mice was analyzed by IVVM. This was followed by histologic determination of the ratio of FaDu cells present for liver area analyzed. Nude mice were treated with 1) IL-1; 2) L-arginine (an NO substrate); or 3) L-N-monomethyl-L-arginine (an NO synthase inhibitor) alone or in combination. These data were analyzed statistically to determine the effect on cell adhesion in the liver. Results: IVVM provided a method for the study of circulating HNSCC with the microcirculation in both the cremaster and liver models. FaDu cells were arrested at the inflow side of the circulation, with maintenance of cell integrity. L-arginine and IL-1 both increased FaDu cell arrest in the liver above baseline (P = .00008 and P = .03), and the combination of these agents potentiated the effect (P = .000009). Conclusions: IVVM allows direct assessment of circulating HNSCC with the microcirculation and is a powerful model for the study of DM. NO and IL-1 play a role in increasing the arrest of HNSCC in the liver and are important in the generation of DM in patients with HNSCC. [source]


In vivo evaluation of an implantable portal pump system for augmenting liver perfusion

BRITISH JOURNAL OF SURGERY (NOW INCLUDES EUROPEAN JOURNAL OF SURGERY), Issue 8 2000
L. R. Jiao
Background Increasing portal inflow in cirrhosis using a mechanical pump reduces portal venous pressure and improves liver function. A pump has been developed for portal vein implantation in human cirrhosis. This study describes the initial in vivo evaluation in a porcine model. Methods Five Large White pigs underwent laparotomy and exposure of the liver. Flow in the hepatic artery, portal vein and hepatic microcirculation was monitored continuously. Hepatic tissue oxygenation was measured by near-infrared spectroscopy. After baseline measurements the pump was inserted into the portal vein. Pump flow rate was then increased stepwise to 50 per cent over the baseline value for a period of 2 h. The pump was then stopped for 20 min and left in situ while continuing to collect systemic and hepatic haemodynamic data. The animal was killed and biopsies for histological examination were taken from the liver, small intestine and spleen. Results The baseline total hepatic blood flow was 626(39) ml/min; the hepatic artery supplied 18·4(2·1) per cent and the portal vein 81·6(2·1) per cent. The pump was inserted successfully in all animals without surgical complications. During surgical insertion of the pump, the temporary portal vein occlusion resulted in a significant rise in hepatic artery blood flow (22(3) per cent; P < 0·01 versus baseline). Portal vein flow was augmented by pumping; there was a significant correlation between the pump motor speed and portal vein flow (P < 0·0001). This inflow correlated directly with flow in the hepatic microcirculation and hepatic tissue oxygenation (P < 0·001). The pump ran satisfactorily throughout the study. Histological examination revealed no evidence of structural damage to the liver or ischaemic changes in the small intestine or spleen. Conclusion It is technically possible and safe to insert an implantable pump in the portal vein. Portal venous blood flow can be increased up to 50 per cent with a resultant increase in flow in the hepatic microcirculation and hepatic oxygenation and without adverse effects on either hepatic or systemic haemodynamics. © 2000 British Journal of Surgery Society Ltd [source]


Blockade of Kupffer cells by gadolinium chloride or dichloromethylene diphosphonate influences hepatic microcirculation after sepsis and haemorrhagic shock

BRITISH JOURNAL OF SURGERY (NOW INCLUDES EUROPEAN JOURNAL OF SURGERY), Issue 7 2000
C. Herzog
Background The liver plays a key role in the host defence response after haemorrhagic shock,resuscitation (H/R) and sepsis. Kupffer cells (KCs) have been shown to be a trigger and motor of the subsequent inflammatory response syndrome. This may lead to hepatocellular dysfunction, microcirculatory alterations and liver injury involving, for example, tumour necrosis factor ,, interleukin (IL) 1 and IL-6. In a double-blind study the effect of KC blockade with either gadolinium chloride or liposome-entrapped dichloromethylene diphosphonate (DMD) on hepatic microvascular flow after H/R and sepsis was investigated. Methods After pretreatment with intravenous gadolinium chloride 10 mg kg,1, DMD 1 mg kg,1 or saline 24 h before induction of shock, male Sprague-Dawley rats (n = 6,10 per group and time) were subjected to either haemorrhagic shock (mean arterial pressure 40 mmHg) for 60 min followed by resuscitation or lipopolysaccharide (LPS) 1 mg kg,1 intravenously. Microvascular flow was assessed by intravital microscopy of fluorescence-marked leucocytes in liver sinusoids at baseline, and 1, 6 and 12 h after shock induction. Results In saline groups, the mean(s.d.) leucocyte flow was significantly (P < 0·05) higher at 1 h (20 759(2901) ,m3 s,1) and 6 h (16 278(2916) ,m3 s,1) after H/R as well as at 6 h after LPS (17 661(3949) ,m3 s,1) compared with the baseline value (13 509(1580) ,m3 s,1). Animals pretreated with gadolinium chloride showed a significant flow increase compared with baseline (11 797(1124) ,m3 s,1) at l h following H/R (26 269(5909) ,m3 s,1). In DMD-pretreated animals leucocyte flow showed no significant change over time, following either H/R or LPS treatment. However, flow was significantly higher at baseline (18 054(998) ,m3 s,1) versus gadolinium chloride and saline groups. In addition, DMD-treated animals showed higher flow values 1 h after LPS challenge (20 665(2337) ,m3 s,1) compared with gadolinium chloride (13 110(1224) ,m3 s,1) and saline (15 311(800) ,m3 s,1) groups. Similarly, at 12 h after H/R the DMD group (21 782(1887) ,m3 s,1) had higher flow values than the gadolinium chloride (14 026(1616) ,m3 s,1) and saline (15 999(3175) ,m3 s,1) groups. Conclusion These results imply a significant influence of KCs on regulation of microvascular perfusion in liver sinusoids under normal conditions as well as after H/R and sepsis. The data indicate differential pathways and effects of blocking KCs by gadolinium chloride and DMD. © 2000 British Journal of Surgery Society Ltd [source]