Henry's Constant (henry + constant)

Distribution by Scientific Domains


Selected Abstracts


Cobalt(II) Complexes with Substituted Salen-Type Ligands and Their Dioxygen Affinity in N,N -Dimethylformamide at Various Temperatures

EUROPEAN JOURNAL OF INORGANIC CHEMISTRY, Issue 8 2005
Andreas Huber
Abstract Several unsymmetrically substituted salen-type cobalt(II) Schiff-base complexes CoL [H2L = 1,6-bis(2-hydroxyphenyl)-3,3-dimethyl-2,5-diaza-1,5-hexadiene (1); 1,6-bis(2-hydroxyphenyl)-3,3-dimethyl-2,5-diaza-1,5-heptadiene (2); 1-(3- tert -butyl-2-hydroxy-5-methylphenyl)-6-(2-hydroxyphen-yl)-3,3-dimethyl-2,5-diaza-1,5-heptadiene (3); 1-(2-hydroxyphenyl)-6-methyl-2,5-diaza-1,5-nonadien-8-one (4); 1-(3- tert -butyl-2-hydroxy-5-methylphenyl)-6-methyl-2,5-di-aza-1,5-nonadien-8-one (5); 1-(2-hydroxyphenyl)-3,3,6-trimethyl-2,5-diaza-1,5-nonadien-8-one (6); 1-(3- tert -butyl-2-hydroxy-5-methylphenyl)-3,3,6-trimethyl-2,5-diaza-1,5-nonadien-8-one (7)] were prepared and characterized by their UV/Vis absorption spectra, magnetic moments, and oxidation potentials. Except for complex 4 (irreversible oxidation with t˝ , 3 h), complexes 1,3 and 5,7 are remarkably resistant against irreversible auto-oxidation in air-saturated N,N -dimethylformamide (DMF) at ambient temperature. To characterize the Lewis acidity of the cobalt center in 1,7, the equilibrium constant Kpy was determined for monoadduct formation with pyridine (CoL + pyCoL·py). An O2 -sensitive optode was used to determine the Henry constant, KH, for the system O2/DMF in the temperature range 298,228 K. The formation of 1:1 adducts of complexes 1,7 with O2 in DMF, as characterized by the equilibrium constant K, was followed spectrophotometrically in the temperature range 298,228 K. The parameters ,Ho, ,So, and K are reported. At 298 K, K ranges from 21.9 M,1 (5) to 155 M,1 (7). The overall spectroscopic information, including EPR spectra obtained with frozen solutions of 3 and 7 in O2 -saturated DMF, confirm that the 1:1 adducts CoL·O2 are cobalt(III) superoxo compounds. The symmetrically substituted salen complex8 [H2L = 1,6-bis(3- tert -butyl-2-hydroxy-5-methylphenyl)-3,3,4,4-tetramethyl-2,5-diaza-1,5-hexadiene in 8] is shown to catalyze the oxidation of triphenylphosphane and 2,6-di- tert -butylphenol by O2 in DMF at ambient temperature. The correlation of the data obtained for K, Kpy, and the oxidation potential E˝ is discussed. (© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2005) [source]


An Evaluation of Physicochemical Treatment Technologies for Water Contaminated with MTBE

GROUND WATER MONITORING & REMEDIATION, Issue 4 2000
Arturo A. Keller
Treatment of methyl tertiary-butyl ether (MTBE) from contaminated surface and ground water supplies presents specific challenges due to the physicochemical properties of MTBE that depend strongly on its hydrophilic nature, and translate into a high solubility in water, and low Henry's constant and low affinity for common adsorbents. We evaluate four treatment technologies-air stripping, granular activated carbon (GAC), hydrophobic hollow fiber membranes, and advanced oxidation processes (AOP)-using ozone or ozone/hydrogen peroxide. Experimental work was carried out to generate parameter values necessary for the design of these processes. Ten different flow rates/concentration combinations were evaluated in our designs to cover the range from high flow rate/low concentration typical of surface water and ground water drinking water supplies to low flow rate/high concentration typical of ground water remediation sites. For all cases, the processes were designed to produce effluent water of 5 ,g/L or less. Capital costs and operation and maintenance costs were determined at the feasibility level by using standard engineering estimating practices. Air stripping is the lowest cost technology for high flow rales (100 to 1000 gpm) if no air treatment is required. Hollow fiber membranes are the lowest cost technology for flow rates of 10 to 100 gpm if no air treatment is required, which is typical at these low flow rates. GAC will be most costeffective at all flow rates if air treatment is required and the influent water has low levels of other organic compounds. AOP using ozone or ozone/hydrogen peroxide is in all cases more expensive than the alternative technologies, and there are sufficient uncertainties at this point with respect to byproducts of AOP to warrant further study of this technology. The cost of treating MTBE-contaminated water for conventional technologies such as air stripping and GAC is 40% to 80% higher than treating water contaminated only with other hydrocarbons such as benzene. [source]


Silicone oil: An effective absorbent for the removal of hydrophobic volatile organic compounds

JOURNAL OF CHEMICAL TECHNOLOGY & BIOTECHNOLOGY, Issue 3 2010
Guillaume Darracq
Abstract BACKGROUND: Hydrophobic volatile organic compounds (VOCs), such as toluene, dimethyl sulfide (DMS) and dimethyl disulfide (DMDS), are poorly soluble in water and classical air treatment processes like chemical scrubbers are not efficient. An alternative technique involving an absorption step in an organic solvent followed by a biodegradation phase was proposed. The solvent must fulfil several characteristics, which are key factors of process efficiency, and a previous study allowed polydimethylsiloxane (or PDMS, i.e. silicone oil) to be selected for this purpose. The aim of this paper was to determine some of its characteristics like absorption capacity and velocity performances (Henry's constant, diffusivity and mass transfer coefficient), and to verify its non-biodegradability. RESULTS: For the three targeted VOCs, Henry's constants in silicone oil were very low compared to those in water, and solubility was infinite. Diffusivity values were found to be in the range 10,10 to 10,11 m2 s,1 and mass transfer coefficients did not show significant differences between the values in pure water and pure silicone oil, in the range 1.0 × 10,3 to 4.0 × 10,3 s,1 for all the VOCs considered. Silicone oil was also found to be non-biodegradable, since its biological oxygen demand (BOD5) value was zero. CONCLUSION: Absorption performances of silicone oil towards toluene, DMS and DMDS were determined and showed that this solvent could be used during the first step of the process. Moreover, its low biodegradability and its absence of toxicity justify its use as an absorbent phase for the integrated process being considered. Copyright © 2010 Society of Chemical Industry [source]