Home About us Contact | |||
Hedgehog Pathway (hedgehog + pathway)
Kinds of Hedgehog Pathway Selected AbstractsCorrelations between the Sonic Hedgehog Pathway and basal cell carcinomaINTERNATIONAL JOURNAL OF DERMATOLOGY, Issue 11 2007Omar Lupi MD The Hedgehog (HH) family of intercellular signaling proteins has some essential functions in patterning both invertebrate and vertebrate embryos. Identified as an important regulator of segment polarity and tissue organization in flies, the HH pathway can also play a significant role in human development and in cutaneous carcinogenesis. The family received their name because when the D. melanogaster HH protein malfunctions the mutant fly ends up looking like a small prickly ball, similar to a curled up hedgehog. The Sonic hedgehog (SHH) pathway is implicated in the etiology of the most common human cancer, the basal cell carcinoma (BCC). Mutations in the receptor of SHH, the patched gene (PTCH), have been characterized in sporadic BCCs as well as those from patients with the rare genetic syndrome nevoid BCC. Human PTCH is mutated in sporadic as well as hereditary BCCs, and inactivation of this gene is probably a necessary if not sufficient step for tumorigenesis. Delineation of the biochemical pathway in which PTCH functions may lead to rational medical therapy for skin cancer and possibly other tumors. [source] Expression of a novel zebrafish zinc finger gene, gli2b, is affected in Hedgehog and Notch signaling related mutants during embryonic developmentDEVELOPMENTAL DYNAMICS, Issue 2 2005Zhiyuan Ke Abstract Gli zinc-finger proteins are known as downstream mediators of the evolutionary conserved Hedgehog pathway. In zebrafish, gli2 functions differently from Gli2 in mammals. This difference could be due to the gli2 duplication in teleosts evolution and partial redundancy between two duplicated genes. Here, we report a novel zebrafish gli2 -like cDNA. Its structure, genetic location, and distinct expression pattern in the central nervous system suggested that this gene might represent a second gli2 of teleosts, and we named it gli2b. gli2b was expressed in the neural keel, excluding the forebrain,midbrain boundary, while gli2 expression complemented this pattern. After 24 hours postfertilization, several specific domains of gli2b expression were observed in the lateral and medial hindbrain and hypothalamus. In mutants affecting the Hedgehog and Notch signaling pathways, gli2b expression was either disrupted or extended in different regions. Developmental Dynamics 232:479,486, 2005. © 2005 Wiley-Liss, Inc. [source] Characterization of the Drosophila myeloid leukemia factorGENES TO CELLS, Issue 12 2006Séverine Martin-Lannerée In human, the myeloid leukemia factor 1 (hMLF1) has been shown to be involved in acute leukemia, and mlf related genes are present in many animals. Despite their extensive representation and their good conservation, very little is understood about their function. In Drosophila, dMLF physically interacts with both the transcription regulatory factor DREF and an antagonist of the Hedgehog pathway, Suppressor of Fused, whose over-expression in the fly suppresses the toxicity induced by polyglutamine. No connection between these data has, however, been established. Here, we show that dmlf is widely and dynamically expressed during fly development. We isolated and analyzed the first dmlf mutants: embryos lacking maternal dmlf product have a low viability with no specific defect, and dmlf - , adults display weak phenotypes. We monitored dMLF subcellular localization in the fly and cultured cells. We were able to show that, although generally nuclear, dMLF can also be cytoplasmic, depending on the developmental context. Furthermore, two differently spliced variants of dMLF display differential subcellular localization, allowing the identification of regions of dMLF potentially important for its localization. Finally, we demonstrate that dMLF can act developmentally and postdevelopmentally to suppress neurodegeneration and premature aging in a cerebellar ataxia model. [source] Ultraviolet radiation and skin cancer: molecular mechanismsJOURNAL OF CUTANEOUS PATHOLOGY, Issue 3 2005Mahmoud R. Hussein This electromagnetic energy has both life-giving and life-endangering effects. UV radiation can damage DNA and thus mutagenize several genes involved in the development of the skin cancer. The presence of typical signature of UV-induced mutations on these genes indicates that the ultraviolet-B part of sunlight is responsible for the evolution of cutaneous carcinogenesis. During this process, variable alterations of the oncogenic, tumor-suppressive, and cell-cycle control signaling pathways occur. These pathways include (a) mutated PTCH (in the mitogenic Sonic Hedgehog pathway) and mutated p53 tumor-suppressor gene in basal cell carcinomas, (b) an activated mitogenic ras pathway and mutated p53 in squamous cell carcinomas, and (c) an activated ras pathway, inactive p16, and p53 tumor suppressors in melanomas. This review presents background information about the skin optics, UV radiation, and molecular events involved in photocarcinogenesis. [source] Sonic Hedgehog signaling in the mammalian brainJOURNAL OF NEUROCHEMISTRY, Issue 3 2010Elisabeth Traiffort J. Neurochem. (2010) 113, 576,590. Abstract The discovery of a Sonic Hedgehog (Shh) signaling pathway in the mature vertebrate CNS has paved the way to the characterization of the functional roles of Shh signals in normal and diseased brain. Shh is proposed to participate in the establishment and maintenance of adult neurogenic niches and to regulate the proliferation of neuronal or glial precursors in several brain areas. Consistent with its role during brain development, misregulation of Shh signaling is associated with tumorigenesis while its recruitement in damaged neural tissue might be part of the regenerating process. This review focuses on the most recent data of the Hedgehog pathway in the adult brain and its relevance as a novel therapeutic approach for brain diseases including brain tumors. [source] Genesis of teratogen-induced holoprosencephaly in mice,AMERICAN JOURNAL OF MEDICAL GENETICS, Issue 1 2010Robert J. Lipinski Abstract Evidence from mechanical, teratological, and genetic experimentation demonstrates that holoprosencephaly (HPE) typically results from insult prior to the time that neural tube closure is completed and occurs as a consequence of direct or indirect insult to the rostral prechordal cells that induce the forebrain or insult to the median forebrain tissue, itself. Here, we provide an overview of normal embryonic morphogenesis during the critical window for HPE induction, focusing on the morphology and positional relationship of the developing brain and subjacent prechordal plate and prechordal mesoderm cell populations. Subsequent morphogenesis of the HPE spectrum is then examined in selected teratogenesis mouse models. The temporal profile of Sonic Hedgehog expression in rostral embryonic cell populations and evidence for direct or indirect perturbation of the Hedgehog pathway by teratogenic agents in the genesis of HPE is highlighted. Emerging opportunities based on recent insights and new techniques to further characterize the mechanisms and pathogenesis of HPE are discussed. © 2010 Wiley-Liss, Inc. [source] Specific congenital heart defects in RSH/Smith-Lemli-Opitz syndrome: Postulated involvement of the Sonic Hedgehog pathway in syndromes with postaxial polydactyly or heterotaxiaBIRTH DEFECTS RESEARCH, Issue 3 2003Maria Cristina Digilio BACKGROUND RSH/Smith-Lemli-Opitz syndrome is an autosomal recessive syndrome due to an inborn error of cholesterol metabolism and is characterized by developmental delay, facial anomalies, hypospadias, congenital heart defect (CHD), postaxial polydactyly, and 2,3 toe syndactyly. CHD is found in half of the propositi, and a specific association with atrioventricular canal defect (AVCD) and anomalous pulmonary venous return has been demonstrated. METHODS We report on an additional patient with RSH/SLOS presenting with complete AVCD and anomalous pulmonary venous return, and discuss the possible relationship of the Sonic Hedgehog (SHH) pathway as causative factor of these CHDs and those in heterotaxia patients with postaxial polydactyly syndromes. RESULTS Anatomic similarities between heterotaxia and CHDs of several syndromes with postaxial polydactyly have been noted previously, considering the frequent association of AVCD with common atrium in these conditions. It is known that both CHDs of heterotaxia and postaxial polydactyly can be related to abnormalities of the SHH pathway. Cholesterol has a critical role in the formation of normally active hedgehog proteins. It could be hypothesized that specific types of CHDs in RSH/SLOS can be caused by modifications of the SHH protein related to the defect of cholesterol biosynthesis. CONCLUSIONS The specific association of AVCD and anomalous pulmonary venous return in patients with RSH/SLOS and the finding of AVCD ± common atrium in several syndromes with polydactyly leads to the hypothesis that heterotaxia due to SHH anomalies could be involved in a large spectrum of conditions. Perturbations in different components of the SHH pathway could lead to several developmental errors presenting with partially overlapping clinical manifestations. Birth Defects Research (Part A) 67149,153, 2003. © 2003 Wiley-Liss, Inc. [source] Liver stem cells and hepatocellular carcinoma,HEPATOLOGY, Issue 1 2009Lopa Mishra Although the existence of cancer stem cells (CSCs) was first proposed over 40 years ago, only in the past decade have these cells been identified in hematological malignancies, and more recently in solid tumors that include liver, breast, prostate, brain, and colon. Constant proliferation of stem cells is a vital component in liver tissues. In these renewing tissues, mutations will most likely result in expansion of the altered stem cells, perpetuating and increasing the chances of additional mutations and tumor progression. However, many details about hepatocellular cancer stem cells that are important for early detection remain poorly understood, including the precise cell(s) of origin, molecular genetics, and the mechanisms responsible for the highly aggressive clinical picture of hepatocellular carcinoma (HCC). Exploration of the difference between CSCs from normal stem cells is crucial not only for the understanding of tumor biology but also for the development of specific therapies that effectively target these cells in patients. These ideas have drawn attention to control of stem cell proliferation by the transforming growth factor beta (TGF-,), Notch, Wnt, and Hedgehog pathways. Recent evidence also suggests a key role for the TGF-, signaling pathway in both hepatocellular cancer suppression and endoderm formation, suggesting a dual role for this pathway in tumor suppression as well as progression of differentiation from a stem or progenitor stage. This review provides a rationale for detecting and analyzing tumor stem cells as one of the most effective ways to treat cancers such as HCC. (HEPATOLOGY 2009;49:318,329.) [source] Rab23 GTPase is expressed asymmetrically in Hensen's node and plays a role in the dorsoventral patterning of the chick neural tubeDEVELOPMENTAL DYNAMICS, Issue 11 2007Naixin Li Abstract The mouse Rab23 protein, a Ras-like GTPase, inhibits signaling through the Sonic hedgehog pathway and thus exerts a role in the dorsoventral patterning of the spinal cord. Rab23 mouse mutant embryos lack dorsal spinal cord cell types. We cloned the chicken Rab23 gene and studied its expression in the developing nervous system. Chick Rab23 mRNA is initially expressed in the entire neural tube but retracts to the dorsal alar plate. Unlike in mouse, we find Rab23 in chick already expressed asymmetrically during gastrulation. Ectopic expression of Rab23 in ventral midbrain induced dorsal genes (Pax3, Pax7) ectopically and reduced ventral genes (Nkx2.2 and Nkx6) without influencing cell proliferation or neurogenesis. Thus, in the developing brain of chick embryos Rab23 acts in the same manner as described for the caudal spinal cord in mouse. These data indicate that Rab23 plays an important role in patterning the dorso-ventral axis by dorsalizing the neural tube. Developmental Dynamics 236:2993,3006, 2007. © 2007 Wiley-Liss, Inc. [source] Defining a role for Sonic hedgehog pathway activation in desmoplastic medulloblastoma by identifying GLI1 target genesINTERNATIONAL JOURNAL OF CANCER, Issue 1 2009Joon Won Yoon Abstract A subgroup of medulloblastomas shows constitutive activation of the Sonic hedgehog pathway with expression of GLI1. We identified the subset of GLI1 transforming target genes specifically expressed in medulloblastomas by comparing GLI1 targets in RK3E cells transformed by GLI1 with the gene expression profile of Sonic hedgehog signature medulloblastomas. We identified 1,823 genes whose expression was altered more than 2-fold in 2 independent RK3E + GLI1 cell lines. We identified 25 whose expression was altered similarly in medulloblastomas expressing GLI1. We identified potential GLI binding elements in the regulatory regions of 10 of these genes, confirmed that GLI1 binds the regulatory regions and activates transcription of select genes, and showed that GLI1 directly represses transcription of Krox-20. We identified upregulation of CXCR4, a chemokine receptor that plays roles in the proliferation and migration of granule cell neuron precursors during development, supporting the concept that reinitiation of developmental programs may contribute to medulloblastoma tumorigenesis. In addition, the targets suggest a pathway through which GLI1 may ultimately affect medulloblastoma cell proliferation, survival and genomic stability by converging on p53, SGK1, MGMT and NTRK2. We identify a p53 mutation in RK3E + GLI1 cells, suggesting that p53 mutations may sometimes shift the balance toward dysregulated tumor cell survival. © 2008 Wiley-Liss, Inc. [source] Genetics of basal cell carcinomaAUSTRALASIAN JOURNAL OF DERMATOLOGY, Issue 2 2010Sally E De Zwaan ABSTRACT Basal cell carcinoma is the most common human malignancy in populations of European origin, and Australia has the highest incidence of basal cell carcinoma in the world. Great advances in the understanding of the genetics of this cancer have occurred in recent years. Mutations of the patched 1 gene (PTCH1) lead to basal cell carcinoma predisposition in Gorlin syndrome. PTCH1 is part of the hedgehog signalling pathway, and derangements within this pathway are now known to be important in the carcinogenesis of many different cancers including sporadic basal cell carcinoma. The molecular biology of the hedgehog pathway is discussed, and mouse models of basal cell carcinoma based on this pathway are explored. New developments in non-surgical treatment of basal cell carcinoma are based on this knowledge. Other genes of importance to basal cell carcinoma development include the tumour suppressor gene P53 and the melanocortin-1 receptor gene. In addition, we discuss molecules of possible importance such as the glutathione-S-transferases, DNA repair genes, cyclin-dependent kinase inhibitor 2A, Brahma and connexins. Evidence of familial aggregation of this cancer is explored and supports the possibility of genetic predisposition to this common malignancy. [source] |