Home About us Contact | |||
Amplicon Expression System (amplicon + expression_system)
Kinds of Amplicon Expression System Selected AbstractsHigh-Level Transient Production of a Heterologous Protein in Plants by Optimizing Induction of a Chemically Inducible Viral Amplicon Expression SystemBIOTECHNOLOGY PROGRESS, Issue 6 2007Michael A. Plesha We have demonstrated that the method of chemical induction using a chemically inducible viral amplicon expression system can be optimized to increase expression of a heterologous protein in plants. A cucumber mosaic virus inducible viral amplicon (CMViva) expression system was used to transiently produce a recombinant human blood protein, ,-1-antitrypsin (AAT), by co-infiltrating intact and detached Nicotiana benthamiana leaves with two Agrobacterium tumefaciens strains, one containing the CMViva expression cassette carrying the AAT gene and the other containing a binary vector carrying the gene silencing suppressor p19. Infiltrated plants were induced by either topical applications or pressure injections and inducer was applied at either a single or multiple time points. Applying induction solution every 2 days via topical application resulted in increasing maximum levels of biologically functional rAAT from 0.71% to 1.3% of the total soluble protein (TSP) in detached plant leaves, a 1.8-fold improvement. Multiple applications of induction solution via pressure injection into intact leaves resulted in maximum levels of biologically functional rAAT being elevated 3-fold up to 2.4% of TSP compared to 0.8% of TSP when using the conventional method of a single topical application, and expression levels remained high 6 days post-induction. Overall production of rAAT in intact leaves was found to have a maximum level of 5.8% of TSP or 390 mg rAAT per kg leaf tissue when applying multiple injections of chemical induction solution. [source] Bioreactor strategies for improving production yield and functionality of a recombinant human protein in transgenic tobacco cell culturesBIOTECHNOLOGY & BIOENGINEERING, Issue 2 2009Ting-Kuo Huang Abstract Plant cell culture production of recombinant products offers a number of advantages over traditional eukaryotic expression systems, particularly if the product can be targeted to and purified from the cell culture broth. However, one of the main obstacles is product degradation by proteases that are produced during cell culture, and/or the loss of biological activity of secreted (extracellular) products as a result of alteration in the protein conformation. Because proteolysis activity and target protein stability can be significantly influenced by culture conditions, it is important to evaluate bioprocess conditions that minimize these effects. In this study, a bioreactor strategy using a protocol involving pH adjustment and medium exchange during plant cell culture is proposed for improving the production of functional recombinant ,1 -antitrypsin (rAAT), a human blood protein, produced using several alternative expression systems, including a Cauliflower mosaic virus (CaMV) 35S constitutive promoter expression system, a chemically inducible, estrogen receptor-based promoter (XVE) expression system, and a novel Cucumber mosaic virus (CMV) inducible viral amplicon (CMViva) expression system developed by our group. We have demonstrated that higher medium pH help reduce protease activity derived from cell cultures and improve the inherent stability of human AAT protein as well. This strategy resulted in a fourfold increase in the productivity of extracellular functional rAAT (100 µg/L) and a twofold increase in the ratio of functional rAAT to total rAAT (48%) in transgenic N. benthamiana cell cultures using a chemically inducible viral amplicon expression system. Biotechnol. Bioeng. 2009;102: 508,520. © 2008 Wiley Periodicals, Inc. [source] Optimization of the bioprocessing conditions for scale-up of transient production of a heterologous protein in plants using a chemically inducible viral amplicon expression systemBIOTECHNOLOGY PROGRESS, Issue 3 2009Michael A. Plesha Abstract Use of transient expression for the rapid, large-scale production of recombinant proteins in plants requires optimization of existing methods to facilitate scale-up of the process. We have demonstrated that the techniques used for agroinfiltration and induction greatly impact transient production levels of heterologous protein. A Cucumber mosaic virus inducible viral amplicon (CMViva) expression system was used to transiently produce recombinant alpha-1-antitrypsin (rAAT) by co-infiltrating harvested Nicotiana benthamiana leaves with two Agrobacterium tumefaciens strains, one containing the CMViva expression cassette carrying the AAT gene and the other containing a binary vector carrying the gene silencing suppressor p19. Harvested leaves were both infiltrated and induced by either pressure or vacuum infiltration. Using the vacuum technique for both processes, maximum levels of functional and total rAAT were elevated by (190 ± 8.7)% and (290 ± 7.5)%, respectively, over levels achieved when using the pressure technique for both processes. The bioprocessing conditions for vacuum infiltration and induction were optimized and resulted in maximum rAAT production when using an A. tumefaciens concentration at OD600 of 0.5 and a 0.25-min vacuum infiltration, and multiple 1-min vacuum inductions further increased production 25% and resulted in maximum levels of functional and total rAAT at (2.6 ± 0.09)% and (4.1 ± 0.29)% of the total soluble protein, respectively, or (90 ± 1.7) and (140 ± 10) mg per kg fresh weight leaf tissue at 6 days post-induction. Use of harvested plant tissue with vacuum infiltration and induction demonstrates a bioprocessing route that is fully amenable to scale-up. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009 [source] High-Level Transient Production of a Heterologous Protein in Plants by Optimizing Induction of a Chemically Inducible Viral Amplicon Expression SystemBIOTECHNOLOGY PROGRESS, Issue 6 2007Michael A. Plesha We have demonstrated that the method of chemical induction using a chemically inducible viral amplicon expression system can be optimized to increase expression of a heterologous protein in plants. A cucumber mosaic virus inducible viral amplicon (CMViva) expression system was used to transiently produce a recombinant human blood protein, ,-1-antitrypsin (AAT), by co-infiltrating intact and detached Nicotiana benthamiana leaves with two Agrobacterium tumefaciens strains, one containing the CMViva expression cassette carrying the AAT gene and the other containing a binary vector carrying the gene silencing suppressor p19. Infiltrated plants were induced by either topical applications or pressure injections and inducer was applied at either a single or multiple time points. Applying induction solution every 2 days via topical application resulted in increasing maximum levels of biologically functional rAAT from 0.71% to 1.3% of the total soluble protein (TSP) in detached plant leaves, a 1.8-fold improvement. Multiple applications of induction solution via pressure injection into intact leaves resulted in maximum levels of biologically functional rAAT being elevated 3-fold up to 2.4% of TSP compared to 0.8% of TSP when using the conventional method of a single topical application, and expression levels remained high 6 days post-induction. Overall production of rAAT in intact leaves was found to have a maximum level of 5.8% of TSP or 390 mg rAAT per kg leaf tissue when applying multiple injections of chemical induction solution. [source] |