Ammonium

Distribution by Scientific Domains
Distribution within Chemistry

Kinds of Ammonium

  • m ammonium
  • quaternary ammonium
  • saturated ammonium

  • Terms modified by Ammonium

  • ammonium acetate
  • ammonium acetate buffer
  • ammonium assimilation
  • ammonium bromide
  • ammonium cation
  • ammonium chloride
  • ammonium citrate
  • ammonium compound
  • ammonium concentration
  • ammonium dihydrogen phosphate
  • ammonium fluoride
  • ammonium formate
  • ammonium formate buffer
  • ammonium group
  • ammonium groups
  • ammonium hydroxide
  • ammonium iodide
  • ammonium ion
  • ammonium ionic liquid
  • ammonium level
  • ammonium moiety
  • ammonium nitrate
  • ammonium oxidation
  • ammonium perchlorate
  • ammonium persulfate
  • ammonium phosphate
  • ammonium salt
  • ammonium sulphate
  • ammonium sulphate precipitation
  • ammonium thiocyanate
  • ammonium uptake

  • Selected Abstracts


    APPLICATION OF STEPWISE AMMONIUM SULFATE PRECIPITATION AS CLEANUP TOOL FOR AN ENZYME-LINKED IMMUNOSORBENT ASSAY OF GLYPHOSATE OXIDOREDUCTASE IN GENETICALLY MODIFIED RAPE OF GT73

    JOURNAL OF FOOD BIOCHEMISTRY, Issue 5 2009
    WENTAO XU
    ABSTRACT The method of enzyme-linked immunosorbent assay after stepwise ammonium sulfate (AS) purification (AS-ELISA) was developed and used to detect genetically modified (GM) rape of GT73 containing glyphosate oxidoreductase (Gox). Gox protein encoded by the Gox gene from Achromobacter sp. was highly expressed as inclusion bodies in Escherichia coli BL21 (DE3) and purified to homogeneity by Ni2+affinity chromatography. A simple and efficient extraction and purification procedure of Gox protein from the seeds and leaves of GM rape was developed by means of stepwise AS precipitation. Purified polyclonal antibodies against Gox was produced and enzyme-linked immunosorbent assay (ELISA) procedures were established further on to measure the Gox protein. AS-ELISA allowed 5% GMOs to be detected in the seeds of GT73 and 0.5% GMOs to be detected in the leaves of GT73 rape, which makes this method an acceptable method to access Gox protein in GM rape of GT73. PRACTICAL APPLICATIONS Many GMOs containing Gox gene have been approved worldwide such as GT73 rape, 1,445 cotton and Mon832 maize. Protein based methods were more important than DNA based methods, because protein performs a specific and concrete function and is closely interconnected with crop traits. AS-ELISA method can be used in the screening of GM plant, Gox protein expression assay and quantitative detection for GMO labeling. AS-ELISA Gox detecting method was established in this paper and was being evaluated of Inter-laboratory Comparison in some of Chinese GMO detection and assessment centers. With the knowledge of ELISA, ELISA method will be the national standards and international and will be a beneficial supplement for the DNA based GMO detecting methods. [source]


    ROLE OF GLUTAMATE DEHYDROGENASE AND GLUTAMINE SYNTHETASE IN CHLORELLA VULGARIS DURING ASSIMILATION OF AMMONIUM WHEN JOINTLY IMMOBILIZED WITH THE MICROALGAE-GROWTH-PROMOTING BACTERIUM AZOSPIRILLUM BRASILENSE,

    JOURNAL OF PHYCOLOGY, Issue 5 2008
    Luz E. De-Bashan
    Enzymatic activities of glutamate dehydrogenase (GDH) and glutamine synthetase (GS) participating in the nitrogen metabolism and related ammonium absorption were assayed after the microalga Chlorella vulgaris Beij. was jointly immobilized with the microalgae-growth-promoting bacterium Azospirillum brasilense. At initial concentrations of 3, 6, and 10 mg · L,1 NH4+, joint immobilization enhances growth of C. vulgaris but does not affect ammonium absorption capacity of the microalga. However, at 8 mg · L,1 NH4+, joint immobilization enhanced ammonium absorption by the microalga without affecting the growth of the microalgal population. Correlations between absorption of ammonium per cell and per culture showed direct (negative and positive) linear correlations between these parameters and microalga populations at 3, 6, and 10 mg · L,1 NH4+, but not at 8 mg · L,1 NH4+, where the highest absorption of ammonium occurred. In all cultures, immobilized and jointly immobilized, having the four initial ammonium concentrations, enzymatic activities of Chlorella are affected by A. brasilense. Regardless of the initial concentration of ammonium, GS activity in C. vulgaris was always higher when jointly immobilized and determined on a per-cell basis. When jointly immobilized, only at an initial concentration of 8 mg · L,1 NH4+ was GDH activity per cell higher. [source]


    METABOLIC AND ECOLOGICAL CONSTRAINTS IMPOSED BY SIMILAR RATES OF AMMONIUM AND NITRATE UPTAKE PER UNIT SURFACE AREA AT LOW SUBSTRATE CONCENTRATIONS IN MARINE PHYTOPLANKTON AND MACROALGAE,

    JOURNAL OF PHYCOLOGY, Issue 2 2007
    T. Alwyn
    Marine phytoplankton and macroalgae acquire important resources, such as inorganic nitrogen, from the surrounding seawater by uptake across their entire surface area. Rates of ammonium and nitrate uptake per unit surface area were remarkably similar for both marine phytoplankton and macroalgae at low external concentrations. At an external concentration of 1 ,M, the mean rate of nitrogen uptake was 10±2 nmol·cm,2·h,1 (n=36). There was a strong negative relationship between log surface area:volume (SA:V) quotient and log nitrogen content per cm2 of surface (slope=,0.77), but a positive relationship between log SA:V and log maximum specific growth rate (,max; slope=0.46). There was a strong negative relationship between log SA:V and log measured rate of ammonium assimilation per cm2 of surface, but the slope (,0.49) was steeper than that required to sustain ,max (,0.31). Calculated rates of ammonium assimilation required to sustain growth rates measured in natural populations were similar for both marine phytoplankton and macroalgae with an overall mean of 6.2±1.4 nmol·cm,2·h,1 (n=15). These values were similar to maximum rates of ammonium assimilation in phytoplankton with high SA:V, but the values for algae with low SA:V were substantially less than the maximum rate of ammonium assimilation. This suggests that the growth rates of both marine phytoplankton and macroalgae in nature are often constrained by rates of uptake and assimilation of nutrients per cm2 surface area. [source]


    CONTRASTING EFFECTS OF METHIONINE SULFOXIMINE ON UPTAKE AND ASSIMILATION OF AMMONIUM IN ULVA INTESTINALIS (CHLOROPHYCEAE),

    JOURNAL OF PHYCOLOGY, Issue 4 2004
    Neill G. Barr
    Ammonium is assimilated in algae by the glutamine synthetase (GS),glutamine:2-oxoglutarate aminotransferase pathway. In addition to the assimilation of external ammonium taken up across the cell membrane, an alga may have to reassimilate ammonium derived from endogenous sources (i.e. nitrate reduction, photorespiration, and amino acid degradation). Methionine sulfoximine (MSX), an irreversible inhibitor of GS, completely inhibited GS activity in Ulva intestinalis L. after 12 h. However, assimilation of externally derived ammonium was completely inhibited after only 1,2 h in the presence of MSX and was followed by production of endogenous ammonium. However, endogenous ammonium production in U. intestinalis represented only a mean of 4% of total assimilation attributable to GS. The internally controlled rate of ammonium uptake (Vi) was almost completely inhibited in the presence of MSX, suggesting that Vi is a measure of the maximum rate of ammonium assimilation. After complete inhibition of ammonium assimilation in the presence of MSX, the initial or surge (Vs) rate of ammonium uptake in the presence of 400 ,M ammonium chloride decreased by only 17%. However, the amount that the rate of ammonium uptake decreased by was very similar to the uninhibited rate of ammonium assimilation. In addition, the decrease in the rate of ammonium uptake in darkness (in the absence of MSX) in the presence of 400 ,M ammonium chloride matched the decrease in the rate of ammonium assimilation. However, in the presence of 10 ,M ammonium chloride, MSX completely inhibited ammonium assimilation but had no effect on the rate of uptake. [source]


    KINETICS OF NITRATE, AMMONIUM, AND UREA UPTAKE BY FOUR INTERTIDAL SEAWEEDS FROM NEW ZEALAND,

    JOURNAL OF PHYCOLOGY, Issue 3 2004
    Julia C. Phillips
    The competitive ability for N uptake by four intertidal seaweeds, Stictosiphonia arbuscula (Harvey) King et Puttock, Apophlaea lyallii Hook. f. et Harvey, Scytothamnus australis Hook. f. et Harvey, and Xiphophora gladiata (Labillardière) Montagne ex Harvey, from New Zealand is described by the uptake kinetics for NO3,, NH4+, and urea. This is the first study to report uptake kinetics for N uptake by a range of southern hemisphere intertidal seaweeds in relation to season and zonation. Species growing at the highest shore positions had higher NO3, and urea uptake at both high and low concentrations and had unsaturable NH4+ uptake in both summer and winter. Although there was evidence of some feedback inhibition of Vmax for NO3, uptake by Stictosiphonia arbuscula growing at the lower vertical limits of its range, rates were high compared with species growing lower on the shore. Our results highlight the superior competitive ability for N uptake of certain high intertidal seaweeds, and consistent with our previous findings we can conclude that intertidal seaweeds in southeast New Zealand are adapted to maximizing N acquisition in a potentially N-limiting environment. [source]


    RAPID AMMONIUM- AND NITRATE-INDUCED PERTURBATIONS TO CHL a FLUORESCENCE IN NITROGEN-STRESSED DUNALIELLA TERTIOLECTA (CHLOROPHYTA),

    JOURNAL OF PHYCOLOGY, Issue 2 2003
    Erica B. Young
    When NH4+ or NO3, was supplied to NO3, -stressed cells of the microalga Dunaliella tertiolecta Butcher, immediate transient changes in chl a fluorescence were observed over several minutes that were not seen in N-replete cells. These changes were predominantly due to nonphotochemical fluorescence quenching. Fluorescence changes were accompanied by changes in photosynthetic oxygen evolution, indicating interactions between photosynthesis and N assimilation. The magnitude of the fluorescence change showed a Michaelis-Menten relationship with half-saturation concentration of 0.5 ,M for NO3, and 10 ,M for NH4+. Changes in fluorescence responses were characterized in D. tertiolecta both over 5 days of N starvation and in cells cultured at a range of NO3, -limited growth rates. Variation in responses was more marked in starved than in limited cells. During N starvation, the timing and onset of the fluorescence responses were different for NO3, versus NH4+ and were correlated with changes in maximum N uptake rate during N starvation. In severely N-starved cells, the major fluorescence response to NO3, disappeared, whereas the response to NH4+ persisted. N-starved cells previously grown with NH4+ alone showed fluorescence responses with NH4+ but not NO3, additions. The distinct responses to NO3, and NH4+ may be due to the differences between regulation of the uptake mechanisms for the two N sources during N starvation. This method offers potential for assessing the importance of NO3, or NH4+ as an N source to phytoplankton populations and as a diagnostic tool for N limitation. [source]


    Purification and Characterization of Acid Phosphatase from the Egg of the Lady Beetle, Harmonia axyridis (Coccinellidae: Coleoptera)

    ENTOMOLOGICAL RESEARCH, Issue 1 2004
    Jun Hyuk LEE
    ABSTRACT Acid phosphatase (AP) in the egg of the lady beetle, Harmonia axyridis, was purified and characterized. Ammonium sulfate precipitation, CM column and isoelectrofocusing (IEF) were applied to purify an estimated molecular weight of 66 kDa AP. The purity was checked by SDS PAGE, native PAGE and Western blot. AP was detected in the hemolymph of the female and the egg, but not in the male on the blotting. Km of AP for a substrate, p -nitrophenyl phosphate (p -NPP), was 1.64 x 10 -4 M. AP had the optimum enzymatic activity at pH 3.5. In inhibition tests performed with various chemicals, ammonium molybdate suppressed 99% of the enzyme activity of AP even at the concentration of 5 x 10 -4 mM. AP was stable up to 50°C. [source]


    The inherent ,safety-net' of an Acrisol: measuring and modelling retarded leaching of mineral nitrogen

    EUROPEAN JOURNAL OF SOIL SCIENCE, Issue 2 2002
    D. Suprayogo
    Summary The inherent features of Acrisols with their increasing clay content with depth are conducive to reducing nutrient losses by nutrient adsorption on the matrix soil surfaces. Ammonium (NH4+) and nitrate (NO3,) adsorption by a Plinthic Acrisol from Lampung, Indonesia was studied in column experiments. The peak of the H218O breakthrough occurred at 1 pore volume, whereas the median pore volumes for NH4+ and NO3, ranged from 6.4 to 6.9 and 1.1 to 1.6, respectively. The adsorption coefficients (Ka in cm3 g,1) measured were 1.81, 1.51, 1.64 and 1.47 for NH4+ and 0.03, 0.09, 0.10 and 0.17 for NO3,, respectively, in the 0,0.2, 0.2,0.4, 0.4,0.6 and 0.6,0.8 m soil depth layers. The NH4+ and NO3, adsorption coefficients derived from this study were put in to the Water, Nutrient and Light Capture in Agroforestry Systems (WaNuLCAS) model to evaluate their effect on leaching in the context of several cropping systems in the humid tropics. The resulting simulations indicate that the inherent ,safety-net' (retardation mechanism) of a shallow (0.8,1 m) Plinthic Acrisol can reduce the leaching of mineral N by between 5 and 33% (or up to 2.1 g m,2), mainly due to the NH4+ retardation factor, and that the effectiveness in reducing N leaching increases with increasing depth. However, the inherent ,safety-net' is useful only if deep-rooted plants can recover the N subsequently. [source]


    Paleosols in Central Illinois as Potential Sources of Ammonium in Groundwater

    GROUND WATER MONITORING & REMEDIATION, Issue 4 2009
    Justin J. G. Glessner
    Glacially buried paleosols of pre-Holocene age were evaluated as potential sources for anomalously large concentrations of ammonium in groundwater in East Central Illinois. Ammonium has been detected at concentrations that are problematic to water treatment facilities (greater than 2.0 mg/L) in this region. Paleosols characterized for this study were of Quaternary age, specifically Robein Silt samples. Paleosol samples displayed significant capacity to both store and release ammonium through experiments measuring processes of sorption, ion exchange, and weathering. Bacteria and fungi within paleosols may significantly facilitate the leaching of ammonium into groundwater by the processes of assimilation and mineralization. Bacterial genetic material (DNA) was successfully extracted from the Robein Silt, purified, and amplified by polymerase chain reaction to produce 16S rRNA terminal restriction fragment length polymorphism (TRFLP) community analyses. The Robein Silt was found to have established diverse and viable bacterial communities. 16S rRNA TRFLP comparisons to well-known bacterial species yielded possible matches with facultative chemolithotrophs, cellulose consumers, nitrate reducers, and actinomycetes. It was concluded that the Robein Silt is both a source and reservoir for groundwater ammonium. Therefore, the occurrence of relatively large concentrations of ammonium in groundwater monitoring data may not necessarily be an indication of only anthropogenic contamination. The results of this study, however, need to be placed in a hydrological context to better understand whether paleosols can be a significant source of ammonium to drinking water supplies. [source]


    Chemical and Bacterial Quality of Aeration-Type Waste Water Treatment System Discharge

    GROUND WATER MONITORING & REMEDIATION, Issue 2 2007
    Samuel V Panno
    On-site waste water treatment systems are a potential source of chemical and bacterial contamination to ground water in areas with highly susceptible aquifers such as the sinkhole plain of southwestern Illinois. Ground water from wells, cave streams, and water that discharges from the numerous springs in this area is typically contaminated with nitrate and enteric bacteria and thus may pose a health hazard to those who come into contact with it. In order to determine if the most popular type of on-site waste water treatment systems in the study area was a potential source, samples of effluents discharged at the land surface from 23 domestic aeration-type on-site waste water treatment systems were collected to characterize their water quality and bacterial contents. Most of the effluents contained relatively large concentrations of sodium (Na+), chloride (Cl,), nutrients (nitrogen [N], phosphate [PO43,], and potassium [K+]), and enteric bacteria. Ion concentration ranges (in mg/L) were Na+ (46 to 416), Cl, (21 to 618), N (4.7 to 67), PO4 -P (1.4 to 48), and K+ (6.0 to 257). The sources of elevated Na+ and Cl, were human waste and NaCl used in the water softening systems of the houses. Ammonium was usually the dominant inorganic N species, indicating incomplete oxidation of the waste water. Discharge of Na+, Cl,, and nutrients could also have negative impacts on ground water and surface water quality, subsurface and surface aquatic ecosystems, and vegetation. Our characterization of effluent from these waste water treatment systems revealed their generally poor quality and the likelihood that they can contaminate ground water in areas with highly vulnerable aquifers. [source]


    Effects of Salinity and Mixed Ammonium and Nitrate Nutrition on the Growth and Nitrogen Utilization of Barley

    JOURNAL OF AGRONOMY AND CROP SCIENCE, Issue 4 2001
    A. Ali
    The absorption and utilization of nitrogen (N) by plants are affected by salinity and the form of N in the root medium. A hydroponic study was conducted under controlled conditions to investigate growth and N uptake by barley (Hordeum vulgare L.) supplied with five different NH4+ -N/NO3, -N ratios at electrical conductivity of 0 and 8 dS m,1. The five NH4+ -N/NO3 -N ratios were 0/100, 25/75, 50/50, 75/25 and 100/0, each giving a total N supply of 100 mg N l,1 in the root medium. A mixed N supply of NH4+ and NO3, resulted in greater accumulation of N in plants than either NO3, or NH4+ as the sole N source. Plants produced a significantly higher dry matter yield when grown with mixed N nutrition than with NH4+ or NO3, alone. Total dry matter production and root and shoot N contents decreased with increasing salinity in the root medium. The interaction between salinity and N nutrition was found to be significant for all the variables. A significant positive correlation (r=0.97) was found between nitrogen level in the plant shoot and its dry matter yield. Wachstum und Stickstoffausnutzung bei Gerste in Abhängigkeit von Versalzung und Michungen von Ammonium und Nitrat Aufnahme und Nutzung von N durch Pflanzen wird von der Versalzung und N-Form im Wurzelbereich bestimmt. Es wurde in Hydrokultur unter kontrollierten Bedingungen Wachstum und N-Aufnahme durch Gerste (Hordeum vulgare L.) bei Anwendung von fünf unterschiedlichen NH4+ -N/NO3, -N Verhältnissen bei einer elektrischen Konduktivität von 0 und 8 dS m,1 untersucht. Die Gesamtmenge von 100 mg N l,1 im Wurzelmedium wies NH4+ -N/NO3, -N Verhältnisse von 0/100, 25/75, 50/50, 75/25 und 100/0 auf. Mischungen von NH4+ und NO3, führten zu einer größeren Aufnahme durch die Pflanzen als bei alleiniger Anwendung von NO3, oder NH4+. Die Pflanzen produzierten signifikant mehr Gesamttrockenmasse mit Mischungen der beiden N-Formen im Vergleich zu alleiniger Anwendung von NH4+ oder NO3,. Die Gesamttrockenmasse sowie die N-Gehalte von Wurzel und Sproß nahmen mit steigender Versalzung ab. Versalzungs- und N-Versorgungs-Interaktion war signifikant in allen Versuchsbedingungen. Eine signifikante positive Korrelation (r=0,97) wurde zwischen Stickstoffkonzentration und der Trockenmasseproduktion der Pflanze gefunden. [source]


    Soil N dynamics in relation to leaf litter quality and soil fertility in north-western Patagonian forests

    JOURNAL OF ECOLOGY, Issue 2 2003
    Patricia Satti
    Summary 1We examined the relationships among soil N dynamics, soil chemistry and leaf litter quality in 28 forest stands dominated by conifers, woody broad-leaf deciduous species or broad-leaf evergreens. Potential net N mineralization, net nitrification and microbial biomass N were used as indicators of soil N dynamics; pH, organic C, total N, exchangeable cations and extractable P as indicators of soil chemistry and N concentration, lignin concentration, C : N ratio and lignin : N ratio in senescent leaves as indicators of leaf litter quality. N dynamics were assessed in two consecutive years with contrasting precipitation. 2Net N mineralization was lower in stands of the three conifers and one of three broad-leaf evergreen species than in stands of the other six broad-leaf species (40,77 vs. 87,250 mg N kg,1 after 16-week incubations) and higher in the wetter year. 3The proportion of N nitrified was high beneath most species regardless of mineralization rates, soil N fertility and leaf litter quality, and was significantly higher for the wetter year. Ammonium was the predominant form of N in three sites affected by seasonal waterlogging and in two sites the predominant form changed from ammonium in the drier year to nitrate during the wetter year, probably due to differences in soil texture affecting soil moisture. 4Net N mineralization was linearly related to microbial biomass N, implying that the microbial activity per biomass unit was quite similar beneath all species. Constant microbial biomass during the wetter year suggested that as mineralization/nitrification increased, there was a higher potential risk of N losses. 5Although the litter lignin : N ratio allowed differentiation of soil N dynamics between broad-leaf species and conifers, its constant value (23,28) in all broad-leaf species made it a poor predictor of the differences found within this group. Across all sites and between broad-leaf species, soil N dynamics were best explained by a combination of leaf litter lignin and soil chemistry indicators, particularly soil total N for net N mineralization and net nitrification, and soil organic C for microbial biomass N. [source]


    CONTRASTING EFFECTS OF METHIONINE SULFOXIMINE ON UPTAKE AND ASSIMILATION OF AMMONIUM IN ULVA INTESTINALIS (CHLOROPHYCEAE),

    JOURNAL OF PHYCOLOGY, Issue 4 2004
    Neill G. Barr
    Ammonium is assimilated in algae by the glutamine synthetase (GS),glutamine:2-oxoglutarate aminotransferase pathway. In addition to the assimilation of external ammonium taken up across the cell membrane, an alga may have to reassimilate ammonium derived from endogenous sources (i.e. nitrate reduction, photorespiration, and amino acid degradation). Methionine sulfoximine (MSX), an irreversible inhibitor of GS, completely inhibited GS activity in Ulva intestinalis L. after 12 h. However, assimilation of externally derived ammonium was completely inhibited after only 1,2 h in the presence of MSX and was followed by production of endogenous ammonium. However, endogenous ammonium production in U. intestinalis represented only a mean of 4% of total assimilation attributable to GS. The internally controlled rate of ammonium uptake (Vi) was almost completely inhibited in the presence of MSX, suggesting that Vi is a measure of the maximum rate of ammonium assimilation. After complete inhibition of ammonium assimilation in the presence of MSX, the initial or surge (Vs) rate of ammonium uptake in the presence of 400 ,M ammonium chloride decreased by only 17%. However, the amount that the rate of ammonium uptake decreased by was very similar to the uninhibited rate of ammonium assimilation. In addition, the decrease in the rate of ammonium uptake in darkness (in the absence of MSX) in the presence of 400 ,M ammonium chloride matched the decrease in the rate of ammonium assimilation. However, in the presence of 10 ,M ammonium chloride, MSX completely inhibited ammonium assimilation but had no effect on the rate of uptake. [source]


    Soil- and plant-based nitrogen-fertilizer recommendations in arable farming

    JOURNAL OF PLANT NUTRITION AND SOIL SCIENCE, Issue 4 2005
    Hans-Werner Olfs
    Abstract Under- as well as overfertilization with nitrogen (N) will result in economic loss for the farmer due to reduced yields and quality of the products. Also from an ecological perspective, it is important that the grower makes the correct decision on how much and when to apply N for a certain crop to minimize impacts on the environment. To aggravate the situation, N is a substance that is present in many compartments in different forms (nitrate, ammonium, organic N, etc.) in the soil-plant environment and takes part in various processes (e.g., mineralization, immobilization, leaching, denitrification, etc.). Today, many N-recommendation systems are mainly based on yield expectation. However, yields are not stable from year to year for a given field. Also the processes that determine the N supply from other sources than fertilizer are not predictable at the start of the growing season. Different methodological approaches are reviewed that have been introduced to improve N-fertilizer recommendations for arable crops. Many soil-based methods have been developed to measure soil mineral N (SMN) that is available for plants at a given sampling date. Soil sampling at the start of the growing period and analyzing for the amount of NO -N (and NH -N) is a widespread approach in Europe and North America. Based on data from field calibrations, the SMN pool is filled up with fertilizer N to a recommended amount. Depending on pre-crop, use of organic manure, or soil characteristics, the recommendation might be modified (±10,50,kg N ha,1). Another set of soil methods has been established to estimate the amount of N that is mineralized from soil organic matter, plant residues, and/or organic manure. From the huge range of methods proposed so far, simple mild extraction procedures have gained most interest, but introduction into practical recommendation schemes has been rather limited. Plant-analytical procedures cover the whole range from quantitative laboratory analysis to semiquantitative "quick" tests carried out in the field. The main idea is that the plant itself is the best indicator for the N supply from any source within the growth period. In-field methods like the nitrate plant sap/petiole test and chlorophyll measurements with hand-held devices or via remote sensing are regarded as most promising, because with these methods an adequate adjustment of the N-fertilizer application strategy within the season is feasible. Prerequisite is a fertilization strategy that is based on several N applications and not on a one-go approach. Boden- und Pflanzenanalyse zur Stickstoff-Düngebedarfsprognose in Ackerkulturen Unter- und Überdüngung mit N führen zu deutlichen ökonomischen Verlusten für Landwirte, da sowohl der Ertrag als auch die Qualität der Erzeugnisse vermindert werden. Auch aus ökologischer Sicht ist die richtige Entscheidung des Anbauers über Höhe und Zeitpunkt der N-Düngung von Bedeutung, um die Auswirkungen auf die Umwelt so gering wie möglich zu halten. Erschwerend kommt hinzu, dass N in sehr vielen Umweltkompartimenten in verschiedenen Bindungsformen (Nitrat, Ammonium, organisch gebundener N) vorkommt und dass N in verschiedenste Umsetzungsprozesse involviert ist (Mineralisation, Immobilisation, Auswaschung, Denitrifikation). Auch heutzutage orientieren sich viele Systeme, die zur N-Düngebedarfsprognose eingesetzt werden, im Wesentlichen an der Ertragserwartung. Dabei ist jedoch zu bedenken, dass weder der Ertrag als von Jahr zu Jahr stabil angesehen werden kann, noch dass die Prozesse, die das bodenbürtige N-Angebot bestimmen, zu Beginn der Vegetationsperiode hinreichend gut vorausgesagt werden können. Daher werden im Folgenden verschiedene methodische Ansätze erläutert, die zur Verbesserung der N-Düngebedarfsprognose für Ackerkulturen geeignet erscheinen. Viele Bodenanalyse-Methoden zielen darauf ab, den mineralischen N-Vorrat des Bodens, der an einem bestimmten Beprobungstermin als pflanzenverfügbarer N vorliegt, zu erfassen. Die Bodenprobeentnahme zu Beginn der Vegetationsperiode und die Bestimmung der Menge an Nitrat (und Ammonium) ist ein in Europa und Nord-Amerika weitverbreiteter Ansatz. Anhand der Daten aus Kalibrierversuchen kann dann abgeleitet werden, wie viel Dünger-N zum Auffüllen des N-Vorrats eingesetzt werden soll. In Abhängigkeit von Vorfrucht, Einsatz von Wirtschaftsdüngern oder weiteren Bodeneigenschaften kann diese Empfehlung modifiziert werden (± 10 bis 50,kg N ha,1). Weitere Bodenuntersuchungsmethoden wurden entwickelt, um die Menge des während der Vegetationszeit aus der organischen Bodensubstanz, aus Ernteresten und/oder aus Wirtschaftsdüngern mineralisierten N zu bestimmen. Obwohl aus der Vielzahl der vorgeschlagenen Methoden einfache "milde" Extraktionsverfahren eine gewisse Bedeutung erlangt haben, werden diese in der Praxis bei der Ermittlung des N-Düngebedarfs als zusätzliche Information nur selten berücksichtigt. Verfahren der Pflanzenanalyse umfassen einen weiten Bereich von quantitativen Laboranalysen bis zu halbquantitativen Schnelltests, die direkt auf dem Acker eingesetzt werden können. Die wesentliche Idee beim Einsatz der Pflanzenanalyse ist die Vorstellung, dass die Pflanze an sich der beste Indikator ist, die N-Verfügbarkeit aus den verschiedenen Quellen gewissermaßen kumulativ innerhalb der Wachstumszeit anzuzeigen. Methoden, die auf dem Acker eingesetzt werden können, wie z.,B. der Nitrat-Pflanzensaft- (oder Blattstiel-)Test sowie die Chlorophyll-Messung mit Handgeräten oder berührungslose Messverfahren haben den klaren Vorteil, dass sie eine schnelle Anpassung der N-Düngestrategie während der Vegetation ermöglichen. Voraussetzung dazu ist allerdings, dass die N-Düngestrategie nicht auf einer Einmal-Applikation beruht, sondern dass die N-Düngermenge auf mehrere Teilgaben verteilt wird. [source]


    Added nitrogen interaction as affected by soil nitrogen pool size and fertilization , significance of displacement of fixed ammonium

    JOURNAL OF PLANT NUTRITION AND SOIL SCIENCE, Issue 2 2004
    Shan Lin
    Abstract Displacement of NH4+ fixed in clay minerals by fertilizer 15NH4+ is seen as one mechanism of apparent added nitrogen interactions (ANI), which may cause errors in 15N tracer studies. Pot and incubation experiments were carried out for a study of displacement of fixed NH4+ by 15N-labeled fertilizer (ammonium sulfate and urea). A typical ANI was observed when 15N-labeled urea was applied to wheat grown on soils with different N reserves that resulted from their long-term fertilization history: Plants took up more soil N when receiving fertilizer. Furthermore, an increased uptake of 15N-labeled fertilizer, induced by increasing unlabeled soil nitrogen supply, was found. This ANI-like effect was in the same order of magnitude as the observed ANI. All causes of apparent or real ANI can be excluded as explanation for this effect. Plant N uptake-related processes beyond current concepts of ANI may be responsible. NH4+ fixation of fertilizer 15NH4+ in sterilized or non-sterile, moist soil was immediate and strongly dependent on the rate of fertilizer added. But for the tested range of 20 to 160 mg 15NH4+ -N kg,1, the NH4+ fixation rate was low, accounting for only up to 1.3,% of fertilizer N added. For sterilized soil, no re-mobilization of fixed 15NH4+ was observed, while in non-sterile, biologically active soil, 50,% of the initially fixed 15NH4+ was released up to day 35. Re-mobilization of 15NH4+ from the pool of fixed NH4+ started after complete nitrification of all extractable NH4+. Our results indicate that in most cases, experimental error from apparent ANI caused by displacement of fixed NH4+ in clay is unlikely. In addition to the low percentage of only 1.3,% of applied 15N, present in the pool of fixed NH4+ after 35 days, there were no indications for a real exchange (displacement) of fixed NH4+ by 15N. Einfluss der Düngung und des N-Bodenvorrats auf Added Nitrogen Interactions , Bedeutung des Ersatzaustauschs mit in Tonmineralen fixiertem Ammonium Ersatzaustausch (displacement) von in Tonmineralen fixiertem NH4+ durch Dünger- 15NH4+ gilt als eine Ursache für scheinbare (apparente) Added Nitrogen Interactions (ANI). Diese werden als Fehlerursache in 15N-Tracerstudien diskutiert. Durch Einsatz von 15N-markiertem Ammoniumsulfat und Harnstoff wurde in Inkubations- und Gefäßversuchen geprüft, welche Bedeutung der Ersatzaustausch von gedüngtem 15NH4+ mit in Tonmineralen fixiertem Ammonium hat. Mit zwei Böden, die sich nur in ihrer Düngungsgeschichte unterschieden, zeigte sich nach Düngung mit 15N-markiertem Harnstoff zu Weizen eine typische ANI: Nach Düngung nahmen die Pflanzen nicht nur Dünger-N, sondern auch mehr Boden-N auf. Zusätzlich zeigte sich, dass die Pflanzen bei gleicher Düngung mehr Dünger-N aufnahmen, wenn sie auf Boden mit größerem N-Vorrat wuchsen. Beide Effekte hatten die gleiche Größenordnung. Dieser Befund kann mit den bisher beschriebenen Ursachen für ANI nicht erklärt werden. Wahrscheinlicher scheint eine Beeinflussung der aktiven, pflanzlichen N-Aufnahme. Die Fixierung von Dünger- 15NH4+ in sterilisiertem oder nicht sterilisiertem, frischem Boden erfolgte unmittelbar und hing von der gedüngten N-Menge ab. Innerhalb des untersuchten Bereichs von 20 bis 160 mg 15NH4+ -N kg,1 wurden nur 1,3,% des gedüngten NH4+ in Tonmineralen fixiert. Dieses fixierte NH4+ wurde bei zuvor sterilisiertem Boden nicht wieder freigesetzt. Hingegen wurden aus den Tonmineralen des biologisch aktiven, nicht sterilisierten Bodens innerhalb des 35-tägigen Versuchszeitraums 50,% des fixierten NH4+ wieder freigesetzt. Diese Freisetzung setzte in dem Moment ein, als der Vorrat des leicht verfügbaren, 2 M KCl-extrahierbaren NH4+ durch Nitrifikation vollständig erschöpft war. Unsere Ergebnisse zeigen, dass Versuchsfehler durch Ersatzaustausch mit Tonmineral-fixiertem Ammonium als Ursache für die scheinbare ANI in den meisten Fällen auszuschließen sein dürften. Innerhalb von 35 Tagen traten maximal 1,3,% des gedüngten 15N-markierten Dünger-N in die Fraktion des fixierten Ammoniums über. Hinweise für einen echten Ersatzaustausch des in Tonmineralen fixierten Ammoniums durch Dünger-N konnten nicht gefunden werden. [source]


    Ternary complex formation between AmtB, GlnZ and the nitrogenase regulatory enzyme DraG reveals a novel facet of nitrogen regulation in bacteria

    MOLECULAR MICROBIOLOGY, Issue 6 2007
    Luciano F. Huergo
    Summary Ammonium movement across biological membranes is facilitated by a class of ubiquitous channel proteins from the Amt/Rh family. Amt proteins have also been implicated in cellular responses to ammonium availability in many organisms. Ammonium sensing by Amt in bacteria is mediated by complex formation with cytosolic proteins of the PII family. In this study we have characterized in vitro complex formation between the AmtB and PII proteins (GlnB and GlnZ) from the diazotrophic plant-associative bacterium Azospirillum brasilense. AmtB,PII complex formation only occurred in the presence of adenine nucleotides and was sensitive to 2-oxoglutarate when Mg2+ and ATP were present, but not when ATP was substituted by ADP. We have also shown in vitro complex formation between GlnZ and the nitrogenase regulatory enzyme DraG, which was stimulated by ADP. The stoichiometry of this complex was 1:1 (DraG monomer : GlnZ trimer). We have previously reported that in vivo high levels of extracellular ammonium cause DraG to be sequestered to the cell membrane in an AmtB and GlnZ-dependent manner. We now report the reconstitution of a ternary complex involving AmtB, GlnZ and DraG in vitro. Sequestration of a regulatory protein by the membrane-bound AmtB,PII complex defines a new regulatory role for Amt proteins in Prokaryotes. [source]


    Do nutrient additions alter carbon sink strength of ectomycorrhizal fungi?

    NEW PHYTOLOGIST, Issue 2 2001
    M. I. Bidartondo
    Summary ,,Carbon sink strength differences are examined here between ectomycorrhizal fungi in interaction with additions of ammonium and apatite (a phosphorus- and calcium-containing mineral). ,,Pinus muricata associated with Paxillus involutus and four suilloid isolates (Suillus pungens and members of three Rhizopogon section Amylopogon species groups) were used in microcosm nutrient addition experiments. ,,The associations differed in ectomycorrhizal biomass, mycelial growth rate, biomass and respiration. P. involutus produced the lowest biomass of ectomycorrhizal connections to P. muricata, but it consumed proportionally more carbon per connection and transferred more than twice as much ammonium to the host per unit mycorrhizal biomass. Paxillus also colonized the soil more rapidly and intensely than the other fungi, but its mycelial respiration was lowest. Ammonium and apatite addition resulted in a marked increase in respiration and mycelial biomass, respectively, by the suilloid fungi. ,,The high carbon cost of ammonium uptake is suggested as one explanation for reduced sporocarp production and mycelial growth by ectomycorrhizal fungi commonly found after high levels of nitrogen addition. [source]


    Nitrogen-assimilating enzymes in land plants and algae: phylogenic and physiological perspectives

    PHYSIOLOGIA PLANTARUM, Issue 1 2002
    Ritsuko Inokuchi
    An important biochemical feature of autotrophs, land plants and algae, is their incorporation of inorganic nitrogen, nitrate and ammonium, into the carbon skeleton. Nitrate and ammonium are converted into glutamine and glutamate to produce organic nitrogen compounds, for example proteins and nucleic acids. Ammonium is not only a preferred nitrogen source but also a key metabolite, situated at the junction between carbon metabolism and nitrogen assimilation, because nitrogen compounds can choose an alternative pathway according to the stages of their growth and environmental conditions. The enzymes involved in the reactions are nitrate reductase (EC 1.6.6.1-2), nitrite reductase (EC 1.7.7.1), glutamine synthetase (EC 6.3.1.2), glutamate synthase (EC 1.4.1.13-14, 1.4.7.1), glutamate dehydrogenase (EC 1.4.1.2-4), aspartate aminotransferase (EC 2.6.1.1), asparagine synthase (EC 6.3.5.4), and phosphoenolpyruvate carboxylase (EC 4.1.1.31). Many of these enzymes exist in multiple forms in different subcellular compartments within different organs and tissues, and play sometimes overlapping and sometimes distinctive roles. Here, we summarize the biochemical characteristics and the physiological roles of these enzymes. We also analyse the molecular evolution of glutamine synthetase, glutamate synthase and glutamate dehydrogenase, and discuss the evolutionary relationships of these three enzymes. [source]


    Synthesis of the Ammonium Salt of 6-Amino-2-hydroxy- 3,5-dinitropyrazine and a Comparison of its Properties with those of Ammonium 3,5-Diaminopicrate (ADAP)

    PROPELLANTS, EXPLOSIVES, PYROTECHNICS, Issue 5 2009
    Anthony
    Abstract The ammonium salt of 6-amino-2-hydroxy-3,5-dinitropyrazine has been synthesised from 2,6-dimethoxy-3,5-dinitropyrazine and its properties (DSC, crystal structure, impact sensitiveness and thermochemical properties) are compared with the analogous benzene derivative, ammonium 3,5-diaminopicrate. [source]


    Supramolecular Chemistry on a Cluster Surface: Fixation/Complexation of Potassium and Ammonium Ions with Crown-Ether-Like Rings,

    ANGEWANDTE CHEMIE, Issue 32 2009
    Achim Müller Prof.
    Gemeinsam und doch getrennt: Auf einer hochnucleophilen Clusteroberfläche lassen sich Ammonium- und Kaliumionen selektiv komplexieren und trennen. Sechs {Mo4VKO6}-Ringe mit einer Kronenether-artigen Funktionalität (siehe Bild; Mo,blau, V,grün, K,violett, O,rot) in den Löchern des untersuchten Clusterkomplexes fixieren sechs Ammoniumionen (N,orange, H,gelb). [source]


    CH-Directed Anion,, Interactions in the Crystals of Pentafluorobenzyl-Substituted Ammonium and Pyridinium Salts

    CHEMISTRY - A EUROPEAN JOURNAL, Issue 17 2010
    Markus Albrecht Prof.
    Abstract Simple pentafluorobenzyl-substituted ammonium and pyridinium salts with different anions can be easily obtained by treatment of the parent amine or pyridine with the respective pentafluorobenzyl halide. Hexafluorophosphate is introduced as the anion by salt metathesis. In the case of the ammonium salt 4, water co-crystallisation seems to suppress effective anion,, interactions of bromide with the electron-deficient aromatic system, whereas with salts 5 and 6 such interactions are observed despite the presence of water. However, due to asymmetric hydrogen-bonding interactions with ammonium side chains, the anion of 5 is located close to the rim of the pentafluorophenyl group (,1 interaction). In 6 the CH,anion hydrogen bonding is more symmetric and fixes the anion on top of the ring (,6). A similar structure-controlling effect is observed in case of the 1,4-diazabicyclo[2.2.2]octane derivatives 7. Here the position of the anion (Cl, Br, I) is shifted according to the length of the weak CH,halide interaction. The hexafluorophosphate 7,d reveals that this "non-coordinating" anion can be located on top of an aromatic , system. In the methyl-substituted pyridinium salts 9 and 10 different locations of the bromide anions with respect to the , system are observed. This is due to different conformations of the mono- versus disubstituted pyridine, which leads to different directions of the weak, but structurally important, HMeBr bonds. [source]


    Comparison of Physicochemical Properties of New Ionic Liquids Based on Imidazolium, Quaternary Ammonium, and Guanidinium Cations

    CHEMISTRY - A EUROPEAN JOURNAL, Issue 30 2007
    Prashant
    Abstract More than 50 ionic liquids were prepared by using imidazolium, quaternary ammonium, and guanidinium cations and various anions. In these series, different cationic structures such as 1-benzyl-3-methylimidazolium [Bzmim]+, 1,3-dibenzylimidazolium [BzmiBz]+, 1-octyl-3-methylimidazolium [C8mim]+, 1-decyl-3-methylimidazolium [C10mim]+, tricapryl-methylammonium [Aliquat]+, benzyltriethylammonium [BzTEA]+, phenyltrimethylammonium [PhTMA]+, and dimethyldihexylguanidinium [DMG]+ were combined with anions, p -toluenesulfonate [TSA],, dicyanoamide [DCA],, saccharine (2-sulfobenzoic acid imide sodium salt) [SAC],, trifluoroacetate [TFA],, bis(trifluoromethanesulfonyl)imide [Tf2N],, trifluoromethanesulfonate [TfO],, and thiocyanate [SCN],. Important physical data for these ionic liquids are collated, namely solubility in common solvents, viscosity, density, melting point and water content. Apart from the viscosity, the Newtonian and non-Newtonian behavior of these ionic liquids is also disclosed. Stability of these ionic liquids under thermal, basic, acidic, nucleophilic, and oxidative conditions was also studied. The features of the solid,liquid phase transition were analyzed, namely the glass transition temperature and the heat capacity jump associated with the transition from the non-equilibrium glass to the metastable supercooled liquid. A degradation temperature of each ionic liquid was also determined. Comparisons of the properties of various ionic liquids were made. [source]


    Forest age, wood and nutrient dynamics in headwater streams of the Hubbard Brook Experimental Forest, NH

    EARTH SURFACE PROCESSES AND LANDFORMS, Issue 8 2007
    Dana R. Warren
    Abstract Instream processing may substantially alter nutrient export from forested watersheds. This study tested how instream uptake of N and P were affected by successional differences in the accumulation of large wood and debris dams in a 66-year chronosequence formed by five watersheds within the Hubbard Brook Experimental Forest (HBEF), NH. Nutrient enrichment releases in summer 1998 were used to measure the uptake velocities of phosphate, nitrate and ammonium for five streams within HBEF, and results indicated that uptake of PO43, was closely associated with forest age. In 2004, we quantified volume and abundance of large wood in each stream to test whether large wood abundance could be linked to nitrate uptake as well as phosphate. The volume of instream wood increased with forest age, at an apparent rate of 0·03 m3 (100 m),1 per year for these early to mid-successional forests (r2 = 0.95); however, debris dam frequency did not. Instead, debris dam frequency, when controlled for stream size, followed a U-shaped distribution, with high dam frequency in very young forests, low frequency in forests around 20,30 years of age and increasing dam frequency again as forests matured. Phosphate uptake velocity increased strongly with both forest age and large wood volume (r2 = 0·99; p < 0·001 in both cases); however, nitrate and ammonium uptake were not related to either factor. We attribute the positive relationship between phosphate uptake velocity and forest age/large wood volume to increased abiotic adsorption of phosphate by the inorganic sediments retained by wood. Nitrogen uptake in these streams is primarily biologically driven and did not vary predictably with these structural features of channels. We expect wood abundance to increase in HBEF streams as the forest matures, with a subsequent increase in stream phosphate uptake capacity. Copyright © 2007 John Wiley & Sons, Ltd. [source]


    Spatial variability of soil and nutrient characteristics of semi-arid grasslands and shrublands, Jornada Basin, New Mexico

    ECOHYDROLOGY, Issue 1 2008
    Eva Nora Mueller
    Abstract Heterogeneity of vegetation and soil properties is characteristic of semi-arid and arid environments. The potential underlying causes of the dynamics that create this spatial variability, with consequent impacts on landscape connectivity and thus ecological and ecohydrological processes, are not clearly understood. An investigation was carried out into the spatial variability of ponded infiltration rate, soil moisture, soil-aggregate stability, vegetation cover, random roughness and nutrient content in the soil (ammonium, nitrate and phosphorus) at grassland and shrubland sites for two spatial scales in the Jornada Basin, in the northern part of the Chihuahua desert. At the plant-interplant scale, statistically significant differences exist between vegetated and non-vegetated sites for soil moisture and infiltration rate within both shrublands and grasslands. The spatial distributions of all other parameters follow a more complex scheme at this scale. At the landscape scale, distinct differences exist for most parameters between the grasslands and the shrubland sites. Geostatistical analysis revealed that the autocorrelation lengths are not simply a function of average shrub sizes, but may be caused by a more complex pattern probably related to the spatial layout of rill and inter-rill areas and other localized transfers of soil resources through the redistribution of water and wind. These results demonstrate the importance of understanding spatial linkages of processes within the landscape in understanding dryland ecosystem dynamics. Copyright © 2007 John Wiley & Sons, Ltd. [source]


    Nitrogen fixation in seagrass meadows: Regulation, plant,bacteria interactions and significance to primary productivity

    ECOLOGY LETTERS, Issue 1 2000
    D.T. Welsh
    The rhizosphere sediments of seagrasses are generally a site of intense nitrogen fixation activity and this can provide a significant source of "new" nitrogen for the growth of the plants. In this paper, I review the data concerning nitrogen fixation in seagrass ecosystems, the transfer of the fixed nitrogen from the bacteria to the plants and its contribution to the overall productivity of seagrasses in different climatic zones. The relationship between the plants and diazotrophic heterotrophic bacteria in the rhizosphere is discussed, particularly focusing on the potentially important role of nitrogen-fixing, sulphate-reducing bacteria. The regulation of nitrogen fixation rates in the rhizosphere by photosynthetically driven oxygen and fixed carbon release by the plant roots and rhizomes, and the availability of ammonium in the porewater, is assessed. Finally, the hypothesis that a mutualistic or symbiotic association exists between the seagrasses and heterotrophic nitrogen fixers in the rhizosphere, based on the mutual exchange of fixed carbon and nitrogen, is discussed. [source]


    Analysis of sub-ppb levels of Fe(II), Co(II), and Ni(II) by electrokinetic supercharging preconcentration, CZE separation, and in-capillary derivatization

    ELECTROPHORESIS, Issue 20 2007
    Marek Urbanek
    Abstract The analysis of sub-ppb levels of Fe(II), Co(II), and Ni(II) in heat exchanger fluids of nuclear power plants is needed to monitor corrosion. A method involving preconcentration with electrokinetic supercharging (electrokinetic injection with transient ITP), CZE separation, and in-capillary derivatization with ortho -phenanthroline (o -Phe) for direct UV detection was thus developed. First, a multizone BGE was loaded into the capillary by successive hydrodynamic introduction of zones of (i) o -Phe-containing BGE, (ii) BGE for the zonal separation, and (iii) ammonium-based leading electrolyte. Metal cations were electrokinetically injected and stacked at the capillary inlet behind this last leading zone. Finally, a terminating electrolyte zone was hydrodynamically introduced. When a constant voltage was applied, metal ions kept on concentrating isotachophoretically, then separated in CZE mode, were complexed by migrating through an o -Phe zone, and finally detected by direct absorbance. To detect extremely thin peaks, it was attempted for the first time to focus the derivatization reagent by inducing a second transient ITP, before labeling analytes, already separated in CZE mode. With this arrangement, LODs were about 30,ppt in pure water. In heat exchanger fluid matrices containing 1000,ppm bore and 2,ppm lithium, only Fe(II) cation was detected among the three cations of interest at the 1,ppb level using the present method, and its LOD was about ten times higher, due to the lower loading rate during electrokinetic injection. [source]


    Application of dodecyldimethyl (2-hydroxy-3-sulfopropyl) ammonium in wall modification for capillary electrophoresis separation of proteins

    ELECTROPHORESIS, Issue 3 2005
    Wei Wei
    Abstract A zwitterionic surfactant, dodecyldimethyl (2-hydroxy-3-sulfopropyl) ammonium (C12H25N+(CH3)2CH2CHOHCH2SO3,), named dodecyl sulfobetaine (DSB), was used as a novel modifier to coat dynamically capillary walls for capillary electrophoresis separation of basic proteins. The DSB coating suppressed the electroosmotic flow (EOF) in the pH range of 3,12. At high DSB concentration, the EOF was suppressed by more than 8.8,times. The DSB coating also prevented successfully the adsorption of cationic proteins on the capillary wall. Anions, such as Cl,, Br,, I,, SO42,, CO32,, and ClO4,, could be used as running buffer modifiers to adjust the EOF for better separation of analytes. Using this dynamically coated capillary, a mixture of eight inorganic anions achieved complete separation within 4.2,min with the efficiencies from 24,000 to 1,310,000,plates/m. In the presence of ClO4, as EOF adjustor, the separation of a mixture containing four basic proteins (lysozyme, cytochrome c, ,-chymotrypsinogen,A, and myoglobin) yielded efficiencies of 204,000,896,000,plates/m and recoveries of 88%,98%. Migration time reproducibility of these proteins was less than 0.5% relative standard deviation (RSD) from run to run and less than 3.1% RSD from day to day, showing promising application of this novel modifier in protein separation. [source]


    Importance of the counterion in optimization of a borate electrolyte system for analyses of anions in samples with complex matrices performed by capillary zone electrophoresis

    ELECTROPHORESIS, Issue 20 2004
    Ludmila K, ivánková
    Abstract Borate buffers are common background electrolytes for analyses of anions in capillary zone electrophoresis. Usually, sodium borate at a given pH is used and this specification seems to be sufficient for a successful analysis. In this paper, we show that free migration of OH - may deteriorate the analysis of a typical anionic analysis of clinical samples due to uncontrolled migration of OH - throughout the systems of analyzed zones and may damage the stacking of anionic analytes of interest. We have proven that the use of ammonium borate may remedy the situation where the presence of ammonium may selectively stop the free migration of OH - ions, slow down their effective mobility and bring their safe behavior resulting in reproducible stacking of clinically important anions. Results of real analyses of human serum samples confirmed the proposed method and proved that substitution of sodium for ammonium in borate buffers offers reliable analyses of clinical samples having chloride as the bulk component. The experimental results given in this paper are supported also by computer simulation, which can not only support the positive results but also show the dynamics of the separation that is otherwise hidden to any detection possibilities. [source]


    Niche separation of ammonia-oxidizing bacteria across a tidal freshwater marsh

    ENVIRONMENTAL MICROBIOLOGY, Issue 11 2008
    Hendrikus J. Laanbroek
    Summary Like many functional groups or guilds of microorganisms, the group of ammonia-oxidizing bacteria (AOB) consists of a number of physiologically different species or lineages. These physiological differences suggest niche differentiation among these bacteria depending on the environmental conditions. Species of AOB might be adapted to different zones in the flooding gradient of a tidal marsh. This issue has been studied by sampling sediments from different sites and depths within a tidal freshwater marsh along the river Scheldt near the village of Appels in Belgium. Samples were taken in February, April, July and October 1998. Communities of AOB in the sediment were analysed on the basis of the 16S rRNA gene by application of polymerase chain reaction in combination with denaturing gradient gel electrophoresis (DGGE). In addition, moisture content and concentrations of ammonium and nitrate were determined as well as the potential ammonia-oxidizing activities. Six different DGGE bands belonging to the ,-subclass of the Proteobacteria were observed across the marsh. The community composition of AOB was determined by the elevation in the flooding gradient as well as by the sampling depth. The presence of plants was less important for the community composition of AOB. DGGE bands affiliated with the Nitrosospira lineage were mostly found in the upper part of the marsh and in the deeper layers of the sediment. Two of the three DGGE bands related to the Nitrosomonas oligotropha lineage were more broadly distributed over the marsh, but were predominantly found in the upper layers of the sediment. Members of the environmental Nitrosomonas lineage 5 were predominantly detected in the deeper layers in the lower parts of the marsh. Potential driving factors for niche differentiation are discussed. [source]


    Export of nitrogenous compounds due to incomplete cycling within biological soil crusts of arid lands

    ENVIRONMENTAL MICROBIOLOGY, Issue 3 2007
    Shannon L. Johnson
    Summary Second only to water among limiting factors, nitrogen controls the fertility of most arid regions. Where dry and wet depositions are weak, as in the western US deserts, N inputs rely heavily on biological N2 fixation. Topsoil cyanobacterial communities known as biological soil crusts (BSCs) are major N2 fixation hot spots in arid lands, but the fate of their fixed N remains controversial. Using a combination of microscale and mesoscale process rate determinations, we found that, in spite of theoretically optimal conditions, denitrification rates in BSCs were paradoxically immaterial for nitrogen cycling. Denitrifier populations within BSCs were extremely low. Because of this absence of denitrification, and because of the limitation of respiration and ammonia oxidation by diffusive O2 supply, we could demonstrate that BSCs function as net exporters of ammonium, nitrate and organic N to the soils they cover, in approximately stoichiometrically equal proportions. Overall export rates during periods of biological activity are in the range of tens to hundreds of ,mol-N m,2 h,1, commensurate with those of N2 fixation. These results explain the long-term dependence of BSCs on N2 fixation, confirm their role in landscape fertility, and provide a robust argument for conservation of these endangered communities. [source]