Ammonia Toxicity (ammonia + toxicity)

Distribution by Scientific Domains


Selected Abstracts


Ammonia in estuaries and effects on fish

JOURNAL OF FISH BIOLOGY, Issue 6 2005
F. B. Eddy
This review aims to explore the biological responses of fish in estuaries to increased levels of environmental ammonia. Results from laboratory and field studies on responses of fish to varying salinity and their responses increased ammonia will be evaluated, although studies which examine responses to ammonia, in relation to varying salinity, pH and temperature together are rare. In a survey of British estuaries the continuous measurement of total ammonia showed values that ranged from background levels increasing up to c. 10 mg N l,1 although higher values have been noted sporadically. In outer estuaries pH values tended to stabilize towards sea water values (e.g. c. pH 8). Upper reaches of estuaries are influenced by the quality of their fresh waters sources which can show a wide range of pH and water quality values depending on geological, climatic and pollution conditions. In general the ammonia toxicity (96 h LC50) to marine species (e.g. 0·09,3·35 mg l,1 NH3) appears to be roughly similar to freshwater species (e.g. 0·068,2·0 mg l,1 NH3). Ammonia toxicity is related to differences between species and pH rather than to the comparatively minor influences of salinity and temperature. In the marine environment the toxicity of ionized ammonia should be considered. The water quality standard for freshwater salmonids of 21 ,g l,1 NH3,N was considered to be protective for most marine fish and estuarine fish although the influence of cyclical changes in pH, salinity and temperature were not considered. During ammonia exposures, whether chronic or episodic, estuarine fish may be most at risk as larvae or juveniles, at elevated temperatures, if salinity is near the seawater value and if the pH value of the water is decreased. They are also likely to be at risk from ammonia intoxication in waters of low salinity, high pH and high ammonia levels. These conditions are likely to promote ammonia transfer from the environment into the fish, both as ionized and unionized ammonia, as well as promoting ammonia retention by the fish. Fish are more likely to be prone to ammonia toxicity if they are not feeding, are stressed and if they are active and swimming. Episodic or cycling exposures should also be considered in relation to the rate at which the animal is able to accumulate and excrete ammonia and the physiological processes involved in the transfer of ammonia. In the complex environment of an estuary, evaluation of ammonia as a pollutant will involve field and laboratory experiments to determine the responses of fish to ammonia as salinity and temperature vary over a period of time. It will also be necessary to evaluate the responses of a variety of species including estuarine residents and migrants. [source]


Inhibition of glutamine transport into mitochondria protects astrocytes from ammonia toxicity

GLIA, Issue 8 2007
V. B. R. Pichili
Abstract Hepatic encephalopathy (HE) is a major neurological complication that occurs in the setting of severe liver failure. Ammonia is a key neurotoxin implicated in this condition, and astrocytes are the principal neural cells histopathologically and functionally affected. Although the mechanism by which ammonia causes astrocyte dysfunction is incompletely understood, glutamine, a by-product of ammonia metabolism, has been strongly implicated in many of the deleterious effects of ammonia on astrocytes. Inhibiting mitochondrial glutamine hydrolysis in astrocytes mitigates many of the toxic effects of ammonia, suggesting the involvement of mitochondrial glutamine metabolism in the mechanism of ammonia neurotoxicity. To determine whether mitochondriaare indeed the organelle where glutamine exerts its toxic effects, we examined the effect of L -histidine, an inhibitor of mitochondrial glutamine transport, on ammonia-mediated astrocyte defects. Treatment of cultured astrocytes with L -histidine completely blocked or significantly attenuated ammonia-induced reactive oxygen species production, cell swelling, mitochondrial permeability transition, and loss of ATP. These findings implicate mitochondrial glutamine transport in the mechanism of ammonia neurotoxicity. © 2007 Wiley-Liss, Inc. [source]


Ammonia in estuaries and effects on fish

JOURNAL OF FISH BIOLOGY, Issue 6 2005
F. B. Eddy
This review aims to explore the biological responses of fish in estuaries to increased levels of environmental ammonia. Results from laboratory and field studies on responses of fish to varying salinity and their responses increased ammonia will be evaluated, although studies which examine responses to ammonia, in relation to varying salinity, pH and temperature together are rare. In a survey of British estuaries the continuous measurement of total ammonia showed values that ranged from background levels increasing up to c. 10 mg N l,1 although higher values have been noted sporadically. In outer estuaries pH values tended to stabilize towards sea water values (e.g. c. pH 8). Upper reaches of estuaries are influenced by the quality of their fresh waters sources which can show a wide range of pH and water quality values depending on geological, climatic and pollution conditions. In general the ammonia toxicity (96 h LC50) to marine species (e.g. 0·09,3·35 mg l,1 NH3) appears to be roughly similar to freshwater species (e.g. 0·068,2·0 mg l,1 NH3). Ammonia toxicity is related to differences between species and pH rather than to the comparatively minor influences of salinity and temperature. In the marine environment the toxicity of ionized ammonia should be considered. The water quality standard for freshwater salmonids of 21 ,g l,1 NH3,N was considered to be protective for most marine fish and estuarine fish although the influence of cyclical changes in pH, salinity and temperature were not considered. During ammonia exposures, whether chronic or episodic, estuarine fish may be most at risk as larvae or juveniles, at elevated temperatures, if salinity is near the seawater value and if the pH value of the water is decreased. They are also likely to be at risk from ammonia intoxication in waters of low salinity, high pH and high ammonia levels. These conditions are likely to promote ammonia transfer from the environment into the fish, both as ionized and unionized ammonia, as well as promoting ammonia retention by the fish. Fish are more likely to be prone to ammonia toxicity if they are not feeding, are stressed and if they are active and swimming. Episodic or cycling exposures should also be considered in relation to the rate at which the animal is able to accumulate and excrete ammonia and the physiological processes involved in the transfer of ammonia. In the complex environment of an estuary, evaluation of ammonia as a pollutant will involve field and laboratory experiments to determine the responses of fish to ammonia as salinity and temperature vary over a period of time. It will also be necessary to evaluate the responses of a variety of species including estuarine residents and migrants. [source]


Mechanism of the protective effect of hypothermia on ammonia toxicity in astrocytes

JOURNAL OF NEUROCHEMISTRY, Issue 2002
C. Zwingmann
Ammonia is a key factor in the pathogenesis of hepatic encephalopathy (HE). Acute ammonia treatment causes energy failure of astrocytes, which are able to compensate partly by increased anaerobic metabolism as a means of making up for the energetic shortfall. As hypothermia offers protection from severe encephalopathy and lactate accumulation in liver failure, we investigated the mechanism by which hypothermia protects against ammonia toxicity by multinuclear NMR spectroscopy. 12 h exposure to 5 mm NH4CL decreased the phosphocreatine (PCr)/creatine (Cr) and ATP/ADP ratios to 65 and 76% of control, increased synthesis and release of glutamine to 200,250% and led to a significant stimulation of glycolytic activity reflected by increased uptake and consumption of glucose and accumulation of de novo synthesized intra- and extracellular lactate to 161 and 230% of control. The protective effect of mild hypothermia was evident from inhibiton of lactate accumulation and restoration of ammonia-induced depletion of PCr/Cr. Moderate hypothermia led to an increase of PCr/Cr ratio and inhibited lactate synthesis to 14% of normothermic control, but did not prevent the ATP decrease. While hypothermia inhibited glycolytic flux, intracellular glutamine remained elevated. The results suggest that hypothermia-induced protection against ammonia toxicity results from reduction of cellular energy demand leading to inhibition of anaerobic glucose metabolism and a compensatory stimulation of mitochondrial energy production. Acknowledgements:, Funded by CIHR Canada. [source]


Effect of supplemental l -ascorbyl-2-polyphosphate in enriched live food on the antioxidant defense system of Penaeus vannamei of different sizes exposed to ammonia-N

AQUACULTURE NUTRITION, Issue 5 2006
W.-N. WANG
Abstract The effects of supplemental l -ascorbyl-2-polyphosphate (APP) in enriched live food (Artemia) on reactive oxygen intermediate (ROI) and free radical scavenging enzyme (superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase and glutathione transferase) activities in the muscle of Penaeus vannamei of two sizes exposed to ambient ammonia-N, were investigated. Significantly, decreased ROI value was found in prawns fed on enriched Artemia compared with those fed on starved Artemia (P < 0.05); the decrease was 24% and 36%, respectively. In both size classes, the antioxidant enzyme activities in prawns fed on enriched Artemia were higher than in those fed on starved Artemia (P < 0.05). The results demonstrated that the supplementation of ascorbic acid in enriched live food (Artemia) enhanced the antioxidant capacity of prawn, increasing its defense system that may fight against environmental stress, leading to impaired ammonia toxicity. [source]