Amino Acid Transporter (amino + acid_transporter)

Distribution by Scientific Domains
Distribution within Life Sciences

Kinds of Amino Acid Transporter

  • excitatory amino acid transporter
  • inhibitory amino acid transporter
  • l-type amino acid transporter
  • neutral amino acid transporter


  • Selected Abstracts


    Constitutive Phosphorylation of the Vesicular Inhibitory Amino Acid Transporter in Rat Central Nervous System

    JOURNAL OF NEUROCHEMISTRY, Issue 4 2000
    Cécile Bedet
    Abstract:,-Aminobutyric acid (GABA) and glycine are stored into synaptic vesicles by a recently identified vesicular inhibitory amino acid transporter [VIAAT, also called vesicular GABA transporter (VGAT)]. Immunoblotting analysis revealed that rat brain VIAAT migrated as a doublet during sodium dodecyl sulfate,polyacrylamide gel electrophoresis, with a predominant slower band in all areas examined except olfactory bulb and retina. The slower band corresponded to a phosphorylated form of VIAAT as it was converted to the faster one by treating brain homogenates with alkaline phosphatase or with an endogenous phosphatase identified as type 2A protein,serine/threonine phosphatase using okadaic acid. In contrast, the recombinant protein expressed in COS-7 or PC12 cells co-migrated with the faster band of the brain doublet and was insensitive to alkaline phosphatase. To investigate the influence of VIAAT phosphorylation on vesicular neurotransmitter loading, purified synaptic vesicles were treated with alkaline phosphatase and assayed for amino acid uptake. However, neither GABA nor glycine uptake was affected by VIAAT phosphorylation. These results indicate that VIAAT is constitutively phosphorylated on cytosolic serine or threonine residues in most, but not all, regions of the rat brain. This phosphorylation does not regulate the vesicular loading of GABA or glycine, suggesting that it is involved at other stages of the synaptic vesicle life cycle. [source]


    Inhibition of the Activity of Excitatory Amino Acid Transporter 4 Expressed in Xenopus Oocytes After Chronic Exposure to Ethanol

    ALCOHOLISM, Issue 7 2008
    Seung-Yeon Yoo
    Background:, The extracellular glutamate concentration is tightly controlled by excitatory amino acid transporters (EAATs). EAAT4 is the predominant EAAT in the cerebellar Purkinje cells. Purkinje cells play a critical role in motor coordination and may be an important target for ethanol to cause motor impairments. We designed this study to determine the effects of chronic ethanol exposure on the activity of EAAT4 and evaluate the involvement of protein kinase C (PKC) and phosphatidylinositol 3-kinase (PI3K) in these effects. Methods:, EAAT4 was expressed in Xenopus oocytes following injection of EAAT4 mRNA. Oocytes were incubated with ethanol-containing solution for 24 to 96 hours. Membrane currents induced by l -aspartate were recorded using 2-electrode voltage clamps. Responses were quantified by integration of the current trace and reported in microCoulombs (,C). Results:, Ethanol dose- and time-dependently reduced EAAT4 activity. EAAT4 activity after a 96-hour exposure was significantly decreased compared to the control values at all concentrations tested (10 to 100 mM). Ethanol (50 mM) significantly decreased the Vmax (2.2 ± 0.2 ,C for control vs. 1.6 ± 0.2 ,C for ethanol, n = 18, p < 0.05) of EAAT4 for l -aspartate. Preincubation of ethanol-treated (50 mM for 96 hours) oocytes with phorbol-12-myrisate-13-acetate (100 nM for 10 minutes) abolished the ethanol-induced decrease in EAAT4 activity. While staurosporine (2 ,M for 1 hour) or chelerythrine (100 ,M for 1 hour) significantly decreased EAAT4 activity, no difference was observed in EAAT4 activity among the staurosporine, ethanol, or ethanol plus staurosporine groups. Similarly, EAAT4 activity did not differ among the chelerythrine, ethanol, or ethanol plus chelerythrine groups. Pretreatment of the oocytes with wortmannin (1 ,M for 1 hour) also significantly decreased EAAT4 activity. However, no difference was observed in the wortmannin, ethanol, or ethanol plus wortmannin groups. Conclusions:, The results of this study suggest that chronic ethanol exposure decreases EAAT4 activity and that PKC and PI3K may be involved in these effects. These effects of ethanol on EAAT4 may cause an increase in peri-Purkinje cellular glutamate concentration, and may be involved in cerebellar dysfunction and motor impairment after chronic ethanol ingestion. [source]


    A screen for neurotransmitter transporters expressed in the visual system of Drosophila melanogaster identifies three novel genes

    DEVELOPMENTAL NEUROBIOLOGY, Issue 5 2007
    Rafael Romero-Calderón
    Abstract The fly eye provides an attractive substrate for genetic studies, and critical transport activities for synaptic transmission and pigment biogenesis in the insect visual system remain unknown. We therefore screened for transporters in Drosophila melanogaster that are down-regulated by genetically ablating the eye. Using a large panel of transporter specific probes on Northern blots, we identified three transcripts that are down-regulated in flies lacking eye tissue. Two of these, CG13794 and CG13795, are part of a previously unknown subfamily of putative solute carriers within the neurotransmitter transporter family. The third, CG4476, is a member of a related subfamily that includes characterized nutrient transporters expressed in the insect gut. Using imprecise excision of a nearby transposable P element, we have generated a series of deletions in the CG4476 gene. In fast phototaxis assays, CG4476 mutants show a decreased behavioral response to light, and the most severe mutant behaves as if it were blind. These data suggest an unforeseen role for the "nutrient amino acid transporter" subfamily in the nervous system, and suggest new models to study transport function using the fly eye. © 2007 Wiley Periodicals, Inc. Develop Neurobiol, 2007 [source]


    Presynaptic diadenosine polyphosphate receptors: Interaction with other neurotransmitter systems

    DRUG DEVELOPMENT RESEARCH, Issue 1-2 2001
    M. Teresa Miras-Portugal
    Abstract Diadenosine polyphosphates (ApnA n = 2,6) are natural compounds that can play a neurotransmitter role in the synaptic terminals of the central nervous system. Microfluorimetric studies of [Ca2+]i in single synaptic terminals have shown the presence of specific ionotropic receptors for nucleotides and dinucleotides. These dinucleotide receptors may or may not coexist at the same terminal. Aminergic terminals from rat basal ganglia have been immunologically characterised by the presence of the vesicular monoamine transporter 2 after the functional studies. Fifty-eight percent of these terminals respond to nucleotides, and of these, 17% respond only to Ap5A. Cholinergic terminals from rat midbrain were immunologically characterised by the vesicular acetylcholine transporter. Sixty-three percent of these terminals responded to nucleotides, and of these, 22% responded only to Ap5A. The presynaptic ionotropic dinucleotide receptors can coexist not only with the ATP receptors, but also with various subtypes of nicotinic receptors. GABAergic terminals from rat midbrain were immunologically characterised by the vesicular inhibitory amino acid transporter. Fifty-nine percent of these terminals responded to nucleotides, and of these, 17% responded only to Ap5A. The presynaptic dinucleotide receptors, when stimulated, are able to induce the GABA release from synaptosomal preparations. These data clearly show the broad interaction of nucleotides and dinucleotides with other neurotransmitter systems. Drug Dev. Res. 52:239,248, 2001. © 2001 Wiley-Liss, Inc. [source]


    Pharmacokinetics of Gabapentin during Delivery, in the Neonatal Period, and Lactation: Does a Fetal Accumulation Occur during Pregnancy?

    EPILEPSIA, Issue 10 2005
    Inger Öhman
    Summary:,Purpose: To study the pharmacokinetics of gabapentin (GBP) during delivery, lactation, and in the neonatal period. Methods: GBP concentrations in plasma and breast milk were determined with high-performance liquid chromatography in samples from six women treated with GBP and in their offspring. Blood samples were obtained at delivery from mothers, from the umbilical cord, and from the newborns on three occasions during 2 days after delivery. GBP concentration also was determined in breast milk and in blood collected from five of the mothers and suckling infants 2 weeks to 3 months after birth. Results: The umbilical cord/maternal plasma concentration ratios ranged from 1.3 to 2.1 (mean, 1.7). GBP plasma concentrations in the neonates declined with an estimated half-life of 14 h. Mean GBP plasma concentrations in the infants were 27% of the cord plasma levels (range, 12,36%) 24 h postpartum. The mean milk/maternal plasma concentration ratio was 1.0 (range, 0.7,1.3) from 2 weeks to 3 months. The infant dose of GBP was estimated to 0.2,1.3 mg/kg/day, equivalent to 1.3,3.8% of the weight-normalized dose received by the mother. The plasma concentrations in the breast-fed infants were ,12% of the mother's plasma levels, but no adverse effects were observed. Conclusions: Our limited observations suggest an active transplacental transport of GBP, with accumulation in the fetus as a consequence. We suggest that this could be by the specific L-type amino acid transporter 1 (LAT-1), which is expressed in the placenta. Newborns seem to have a slightly lower capacity to eliminate GBP than do adults. Transfer of GBP to breast milk is extensive, but plasma concentrations appear to be low in suckling infants. No adverse effects were observed in the newborn. Although more data are needed, our observations suggest that breastfeeding in conjunction with GBP treatment is safe. [source]


    Postnatal maturation of Na+, K+, 2Cl, cotransporter expression and inhibitory synaptogenesis in the rat hippocampus: an immunocytochemical analysis

    EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 2 2002
    Serge Marty
    Abstract GABA, a major inhibitory neurotransmitter, depolarizes hippocampal pyramidal neurons during the first postnatal week. These depolarizations result from an efflux of Cl, through GABAA -gated anion channels. The outward Cl, gradient that provides the driving force for Cl, efflux might be generated and maintained by the Na+, K+, 2Cl, cotransporter (NKCC) that keeps intracellular Cl, concentration above electrochemical equilibrium. The developmental pattern of expression of the cotransporter in the hippocampus is not known. We studied the postnatal distribution pattern of NKCC in the hippocampus using a monoclonal antibody (T4) against a conserved epitope in the C-terminus of the cotransporter molecule. We also examined the temporal relationships between the developmental pattern of NKCC expression and the formation of perisomatic GABAergic synapses. This study was aimed at determining, with antivesicular inhibitory amino acid transporter (VIAAT) antibodies, whether perisomatic GABAergic synapses are formed preferentially at the time when GABA is depolarizing. During the first postnatal week, NKCC immunolabelling was restricted to cell bodies in the pyramidal cell layer and in the strata oriens and radiatum. In contrast, at postnatal day 21 (P21) and in adult animals little or no labelling occurred in cell bodies; instead, a prominent dendritic labelling appeared in both pyramidal and nonpyramidal neurons. The ultrastructural immunogold study in P21 rat hippocampi corroborated the light-microscopy results. In addition, this study revealed that a portion of the silver-intensified colloidal gold particles were located on neuronal plasmalemma, as expected for a functional cotransporter. The formation of inhibitory synapses on perikarya of the pyramidal cell layer was a late process. The density of VIAAT-immunoreactive puncta in the stratum pyramidale at P21 reached four times the P7 value in CA3, and six times the P7 value in CA1. Electron microscopy revealed that the number of synapses per neuronal perikaryal profile in the stratum pyramidale of the CA3 area at P21 was three times higher than at P7, even if a concomitant 20% increase in the area of these neuronal perikaryal profiles occurred. It is concluded that, in hippocampal pyramidal cells, there is a developmental shift in the NKCC localization from a predominantly somatic to a predominantly dendritic location. The presence of NKCC during the first postnatal week is consistent with the hypothesis that this transporter might be involved in the depolarizing effects of GABA. The depolarizing effects of GABA may not be required for the establishment of the majority of GABAergic synapses in the stratum pyramidale, because their number increases after the first postnatal week, when GABA action becomes hyperpolarizing. [source]


    Glutamate spillover augments GABA synthesis and release from axodendritic synapses in rat hippocampus

    HIPPOCAMPUS, Issue 1 2010
    Misty M. Stafford
    Abstract Tight coupling between gamma-aminobutyric acid (GABA) synthesis and vesicle filling suggests that the presynaptic supply of precursor glutamate could dynamically regulate inhibitory synapses. Although the neuronal glutamate transporter excitatory amino acid transporter 3 (EAAT3) has been proposed to mediate such a metabolic role, highly efficient astrocytic uptake of synaptically released glutamate normally maintains low-extracellular glutamate levels. We examined whether axodendritic inhibitory synapses in stratum radiatum of hippocampal area CA1, which are closely positioned among excitatory glutamatergic synapses, are regulated by synaptic glutamate release via presynaptic uptake. Under conditions of spatially and temporally coordinated release of glutamate and GABA within pyramidal cell dendrites, blocking glial glutamate uptake enhanced quantal release of GABA in a transporter-dependent manner. These physiological findings correlated with immunohistochemical studies revealing expression of EAAT3 by interneurons and uptake of D-asparate into putative axodendritic inhibitory terminals only when glial uptake was blocked. These results indicate that spillover of glutamate between adjacent excitatory and inhibitory synapses can occur under conditions when glial uptake incompletely clears synaptically released glutamate. Our anatomical studies also suggest that perisomatic inhibitory synapses, unlike synapses within dendritic layers of hippocampus, are not capable of glutamate uptake and therefore transporter-mediated dynamic regulation of inhibition is a unique feature of axodendritic synapses that may play a role in maintaining a homeostatic balance of inhibition and excitation. © 2009 Wiley-Liss, Inc. [source]


    The methylmercury- l -cysteine conjugate is a substrate for the L-type large neutral amino acid transporter

    JOURNAL OF NEUROCHEMISTRY, Issue 4 2008
    Zhaobao Yin
    Abstract Methylmercury (MeHg) is a potent neurotoxin. The mechanism(s) that governs MeHg transport across the blood-brain barrier and other biological membranes remains unclear. This study addressed the role of the L-type large neutral amino acid transporter, LAT1, in MeHg transport. Studies were carried out in CHO-k1 cells. Over-expression of LAT1 in these cells was associated with enhanced uptake of [14C]-MeHg when treated with l -cysteine, but not with the d -cysteine conjugate. In the presence of excess l -methionine, a substrate for LAT1, l -cysteine-conjugated [14C]-MeHg uptake was significantly attenuated. Treatment of LAT-1 over-expressing CHO-k1 cells with l -cysteine-conjugated MeHg was also associated with increased leakage of lactate dehydrogenase into the media as well as reduced cell viability measured by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide reduction assay. In contrast, knock-down of LAT1 decreased the uptake of l -cysteine-conjugated MeHg and attenuated the effects of MeHg on lactate dehydrogenase leakage and CHO-k1 cell viability. These results indicate that the MeHg- l -cysteine conjugate is a substrate for the neutral amino acid transporter, LAT1, which actively transports MeHg across membranes. [source]


    EAAT4 phosphorylation at the SGK1 consensus site is required for transport modulation by the kinase

    JOURNAL OF NEUROCHEMISTRY, Issue 3 2007
    Jeyaganesh Rajamanickam
    Abstract EAAT4 (SLC1A6) is a Purkinje-Cell-specific post-synaptic excitatory amino acid transporter that plays a major role in clearing synaptic glutamate. EAAT4 abundance and function is known to be modulated by the serum and glucocorticoid inducible kinase (SGK) 1 but the precise mechanism of kinase action has not been defined yet. The present work aims to identify the molecular mechanism of EAAT4 modulation by the kinase. The EAAT4 sequence bears two putative SGK1 consensus sites (at Thr40 and Thr504) at the amino and carboxy terminus that are conserved among species. Expression studies in Xenopus oocytes demonstrated that EAAT4-mediated [3H] glutamate uptake and cell surface abundance are enhanced by co-expression of SGK1. Disruption of the SGK1 phosphorylation site at threonine 40 (T40AEAAT4) or of both phosphorylation sites (T40AT504AEAAT4) abrogated the effect of SGK1 on transporter function and expression. SGK1 modulates several transport proteins via inhibition of the ubiquitin ligase Nedd4-2. Co-expression of Nedd4-2 inhibited wild-type EAAT4 but not the T40AT504AEAAT4 mutant. Besides, RNA interference-mediated reduction of endogenous Nedd4-2 (xNedd4-2) expression increased the activity of the transporter. In conclusion, maximal glutamate transport modulation by SGK1 is accomplished by direct EAAT4 stimulation and to a lesser extent by inhibition of intrinsic Nedd4-2. [source]


    Transcriptional regulation of human excitatory amino acid transporter 1 (EAAT1): cloning of the EAAT1 promoter and characterization of its basal and inducible activity in human astrocytes

    JOURNAL OF NEUROCHEMISTRY, Issue 6 2003
    Seon-Young Kim
    Abstract Excitatory amino acid transporter 1 (EAAT1) is one of the two glial glutamate transporters that clear the extracellular glutamate generated during neuronal signal transmission. Here, we cloned and characterized a 2.1-kb promoter region of human EAAT1 and investigated its function in the transcriptional regulation of the EAAT1 gene in human primary astrocytes. The full-length promoter region lacked TATA and CCAAT boxes and an initiator element, it contained several potential transcription factor-binding sites and it exhibited promoter activity in primary astrocytes and in several types of transformed cells. Consecutive 5,-deletion analysis of the EAAT1 promoter indicated the presence of negative and positive regulatory regions and a putative core promoter between ,57 bp and +20 bp relative to the transcription start site (TSS). The core promoter contained a single GC-box in position ,52/,39 and one E-box near the TSS and the GC-box site that was responsible for 90% of the basal promoter activity as determined by mutational analysis. Electrophoretic mobility shift, supershift and competition assays demonstrated binding of stimulating proteins (Sp) 1 and 3 to the GC-box and upstream stimulating factor (USF) 1 to the E-box. Treatment of primary human astrocytes with cellular modulators 8-bromo cyclic AMP and epidermal growth factor increased EAAT1 promoter activity in transient transfection assays and increased cellular EAAT1 mRNA expression and glutamate uptake by astrocytes. Conversely, tumor necrosis factor-, reduced both EAAT promoter activity and cellular EAAT1 mRNA expression. These results enable studies of transcriptional regulation of EAAT1 gene at the promoter level. [source]


    CAT2 arginine transporter deficiency significantly reduces iNOS-mediated NO production in astrocytes

    JOURNAL OF NEUROCHEMISTRY, Issue 2 2003
    Cathyryne K. Manner
    Abstract We have previously demonstrated that genetic ablation of cationic amino acid transporter 2 (Cat2) significantly inhibits nitric oxide (NO) production by inducible nitric oxide synthase (iNOS) in activated macrophages. Here we report that iNOS activity is impaired by 84% in activated Cat2 -deficient astrocytes. Cat2 ablation appears to reduce astrocyte NO synthesis by decreasing the uptake of the sole precursor, arginine, as well as by reducing the expression of iNOS following activation. Excessive or dysregulated NO production by activated astrocytes and other CNS cell types has been implicated in the pathogenesis of neurological disorders. Our results support the idea that manipulation of CAT2 transporter function might be useful for the therapeutic modulation of iNOS activity. [source]


    Constitutive Phosphorylation of the Vesicular Inhibitory Amino Acid Transporter in Rat Central Nervous System

    JOURNAL OF NEUROCHEMISTRY, Issue 4 2000
    Cécile Bedet
    Abstract:,-Aminobutyric acid (GABA) and glycine are stored into synaptic vesicles by a recently identified vesicular inhibitory amino acid transporter [VIAAT, also called vesicular GABA transporter (VGAT)]. Immunoblotting analysis revealed that rat brain VIAAT migrated as a doublet during sodium dodecyl sulfate,polyacrylamide gel electrophoresis, with a predominant slower band in all areas examined except olfactory bulb and retina. The slower band corresponded to a phosphorylated form of VIAAT as it was converted to the faster one by treating brain homogenates with alkaline phosphatase or with an endogenous phosphatase identified as type 2A protein,serine/threonine phosphatase using okadaic acid. In contrast, the recombinant protein expressed in COS-7 or PC12 cells co-migrated with the faster band of the brain doublet and was insensitive to alkaline phosphatase. To investigate the influence of VIAAT phosphorylation on vesicular neurotransmitter loading, purified synaptic vesicles were treated with alkaline phosphatase and assayed for amino acid uptake. However, neither GABA nor glycine uptake was affected by VIAAT phosphorylation. These results indicate that VIAAT is constitutively phosphorylated on cytosolic serine or threonine residues in most, but not all, regions of the rat brain. This phosphorylation does not regulate the vesicular loading of GABA or glycine, suggesting that it is involved at other stages of the synaptic vesicle life cycle. [source]


    Mercury compounds disrupt neuronal glutamate transport in cultured mouse cerebellar granule cells

    JOURNAL OF NEUROSCIENCE RESEARCH, Issue 4 2005
    Elena Fonfría
    Abstract Cerebellar granule cells are targeted selectively by mercury compounds in vivo. Despite the affinity of mercury for thiol groups present in all cells, the molecular determinant(s) of selective cerebellar degeneration remain to be elucidated fully. We studied the effect of mercury compounds on neuronal glutamate transport in primary cultures of mouse cerebellar granule cells. Immunoblots probed with an antibody against the excitatory amino acid transporter (EAAT) neuronal glutamate transporter, EAAT3, revealed the presence of a specific band in control and mercury-treated cultures. Micromolar concentrations of both methylmercury and mercuric chloride increased the release of endogenous glutamate, inhibited glutamate uptake, reduced mitochondrial activity, and decreased ATP levels. All these effects were completely prevented by the nonpermeant reducing agent Tris-(2-carboxyethyl)phosphine (TCEP). Reduction of mitochondrial activity by mercuric chloride, but not by methylmercury, was inhibited significantly by 4,4,-diisothiocyanato-stilbene-2,2,-disulfonic acid (DIDS) and by reduced extracellular Cl, ion concentration. In addition, DIDS and low extracellular Cl, completely inhibited the release of glutamate induced by mercuric chloride, and produced a partial although significant reduction of that induced by methylmercury. We suggest that a direct inhibition of glutamate uptake triggers an imbalance in cell homeostasis, leading to neuronal failure and Cl, -regulated cellular glutamate efflux. Our results demonstrate that neuronal glutamate transport is a novel target to be taken into account when assessing mercury-induced neurotoxicity. © 2005 Wiley-Liss, Inc. [source]


    ENT1 Regulates Ethanol-Sensitive EAAT2 Expression and Function in Astrocytes

    ALCOHOLISM, Issue 6 2010
    Jinhua Wu
    Background:, Equilibrative nucleoside transporter 1 (ENT1) and excitatory amino acid transporter 2 (EAAT2) are predominantly expressed in astrocytes where they are thought to regulate synaptic adenosine and glutamate levels. Because mice lacking ENT1 display increased glutamate levels in the ventral striatum, we investigated whether ENT1 regulates the expression and function of EAAT2 in astrocytes, which could contribute to altered glutamate levels in the striatum. Methods:, We examined the effect of ENT1 inhibition and overexpression on the expression of EAAT2 using quantitative real-time PCR and measured glutamate uptake activity in cultured astrocytes. We also examined the effect of 0 to 200 mM ethanol doses for 0 to 24 hours of ethanol exposure on EAAT2 expression and glutamate uptake activity. We further examined the effect of ENT1 knockdown by a specific siRNA on ethanol-induced EAAT2 expression. Results:, An ENT1-specific antagonist and siRNA treatments significantly reduced both EAAT2 expression and glutamate uptake activity while ENT1 overexpression up-regulated EAAT2 mRNA expression. Interestingly, 100 or 200 mM ethanol exposure increased EAAT2 mRNA expression as well as glutamate uptake activity. Moreover, we found that ENT1 knockdown inhibited the ethanol-induced EAAT2 up-regulation. Conclusions:, Our results suggest that ENT1 regulates glutamate uptake activity by altering EAAT2 expression and function, which might be implicated in ethanol intoxication and preference. [source]


    Expression of L-type amino acid transporter 1 (LAT1) in esophageal carcinoma

    JOURNAL OF SURGICAL ONCOLOGY, Issue 4 2005
    Hideaki Kobayashi MD
    Abstract Background and Objectives It has been reported that amino acid transport systems play an important role in cell proliferation. Their activity is increased in malignant cells compared to benign cells. In this study, we investigated whether L-type amino acid transporter 1 (LAT1) is expressed in human non-cancerous esophageal mucosa and esophageal squamous cell carcinoma. We also examined whether LAT1 expression is correlated with histopathological features. Methods From January 1999 to December 2001, sections of formalin-fixed, paraffin-embedded tissue from 11 cases of early esophageal carcinoma (T1) and 19 cases of advanced esophageal carcinoma (T2, T3) were entered in the study. Histopathologically, all 30 cases were squamous cell carcinoma. Immunohistochemical staining was performed using rabbit anti-LAT1 IgG, with the standard avidin-streptavidin immuno-peroxidase method. Measurement was performed by means of computer-assisted image analysis. The ratio of cells with LAT1 expression in esophageal squamous cell carcinoma and non-cancerous esophageal mucosa was used for analysis in this study. Results Non-cancerous esophageal mucosa expressed LAT1 only in the basal layer of the esophageal wall. Esophageal squamous cell carcinoma expressed LAT1 throughout the tumor. LAT1 expression in esophageal squamous cell carcinoma was significantly higher than that in non-cancerous esophageal mucosa. LAT1 expression in esophageal squamous cell carcinoma increased as the depth of invasion progressed (T1,<,T2 (P,=,0.0477), T2,<,T3 (P,=,0.0415), T1,<,T3 (P,=,0.0044)), and as the tumor size increased. Also, high LAT1 expression was significantly associated with well-differentiated carcinoma. Conclusion These results suggest that LAT1 plays a significant role in cell proliferation, differentiation, and invasion in esophageal squamous cell carcinoma. J. Surg. Oncol. 2005;90:233,238. © 2005 Wiley-Liss, Inc. [source]


    Characterization of a developmentally regulated amino acid transporter (AAT1p) of the rust fungus Uromyces fabae

    MOLECULAR PLANT PATHOLOGY, Issue 1 2002
    Christine Struck
    summary In the rust fungus Uromyces fabae, invasion of the host plant and haustorium formation are accompanied by the activation of many genes (PIGs =in planta induced genes). In addition to the previously described AAT2 (PIG2), AAT1 (PIG27) was found to encode a protein with a high similarity to fungal amino acid permeases. AAT1 transcripts are present in germinated hyphae and throughout the mycelium later in the infection process, but occur at the highest levels in haustoria. Expression of AAT1p in a histidine uptake-defective yeast mutant revealed energy-dependent transport of 14C-histidine, with a KM value of 25.8 µm. In addition, complementation analysis revealed AAT1 -dependent transport for lysine. Using Xenopus oocytes as expression system, AAT1p-dependent symport of protons with a broad spectrum of amino acids was observed, with the highest activities obtained with histidine and lysine. These results confirm that in rust fungi, the expression of amino acid transporters is developmentally regulated and occurs preferentially in the parasitic phase of development. [source]


    Biodistribution of the RD114/mammalian type D retrovirus receptor, RDR

    THE JOURNAL OF GENE MEDICINE, Issue 3 2004
    Bronwyn J. Green
    Abstract Background The limited expression of viral receptors on target cells is a recognized barrier to therapeutic gene transfer. Previous analysis of receptor expression has been performed using indirect methods due to a lack of receptor-specific antibodies. Methods In this report we have used anti-RDR antiserum to provide direct histochemical and flow cytometric analysis of the expression of RDR, which is the cognate receptor for RD114-pseudotyped vectors as well as being a neutral amino acid transporter. Results RDR was present on a range of normal tissues with relevance to gene therapy including: colon, testis, ovary, bone marrow and skeletal muscle. It was also highly expressed on immature cells present in the squamous epithelia of skin, cervix, nasal mucosa, bronchus and tonsil. Of relevance to possible germline gene transfer, we demonstrated a lack of RDR expression on male or female germ cells. RDR expression on mature hemopoietic cell subsets showed up to 5-fold variability between individuals within each lineage,with some individuals expressing low levels of RDR across all blood lineages. Both myeloid and monocytic lineages contained the highest fraction of cells expressing RDR, whereas lymphoid lineages showed the lowest. Coexpression of CD34 and RDR ranged from 2.04 to 0.44% in G-CSF-mobilized peripheral blood samples. Conclusions As a means to optimize gene transfer protocols, biodistribution studies such as these are fundamental to enable targeting of the virus receptor most abundantly expressed on relevant populations. The inter-individual variation of receptor expression seen here also raises the possible requirement for tailor-made gene therapy protocols. Copyright © 2004 John Wiley & Sons, Ltd. [source]


    Correlation of angiogenesis with 18F-FMT and 18F-FDG uptake in non-small cell lung cancer

    CANCER SCIENCE, Issue 4 2009
    Kyoichi Kaira
    L-[3- 18F]-,-methyltyrosine (18F-FMT) is an amino-acid tracer for positron-emission tomography (PET). We have conducted a clinicopathologic study to elucidate the correlation of angiogenesis with 18F-FMT and 2-[18F]-fluoro-2-deoxy-D-glucose (18F-FDG) uptake in patients with non-small cell lung cancer (NSCLC). Thirty-seven NSCLC patients were enrolled in this study, and two PET studies with 18F-FMT and 18F-FDG were performed. Uptake of PET tracers was evaluated with standardized uptake value. Vascular endothelial growth factor (VEGF), CD31, CD34, L-type amino acid transporter 1 (LAT1) and Ki-67 labeling index of the resected tumors were analyzed by immunohistochemical staining, and correlated with the clinicopathologic variables and the uptake of PET tracers. The median VEGF rate was 45% (range, 10,78%). High expression was seen in 30 patients (81%, 30/37). VEGF expression was statistically associated with progressively growing microvessel count. VEGF showed a correlation with LAT1 expression (P = 0.04) and Ki-67 labeling index (P = 0.01). However, it showed no correlation with age, gender, disease stage, tumor size, and histology. Microvessel density (MVD) showed no correlation with any parameters. 18F-FMT and 18F-FDG uptake correlated significantly with VEGF (P < 0.0001, P = 0.026, respectively), whereas the correlation of 18F-FMT and VEGF was more meaningful. The present study demonstrated that the metabolic activity of primary tumors as evaluated by PET study with 18F-FMT and 18F-FDG is related to tumor angiogenesis and the proliferative activity in NSCLC. (Cancer Sci 2009; 100: 753,758) [source]


    Physiological requirement for the glutamate transporter dEAAT1 at the adult Drosophila neuromuscular junction

    DEVELOPMENTAL NEUROBIOLOGY, Issue 10 2006
    Thomas Rival
    Abstract L -Glutamate is the major excitatory neurotransmitter in the mammalian brain. Specific proteins, the Na+/K+ -dependent high affinity excitatory amino acid transporters (EAATs), are involved in the extracellular clearance and recycling of this amino acid. Type I synapses of the Drosophila neuromuscular junction (NMJ) similarly use L -glutamate as an excitatory transmitter. However, the localization and function of the only high-affinity glutamate reuptake transporter in Drosophila, dEAAT1, at the NMJ was unknown. Using a specific antibody and transgenic strains, we observed that dEAAT1 is present at the adult, but surprisingly not at embryonic and larval NMJ, suggesting a physiological maturation of the junction during metamorphosis. We found that dEAAT1 is not localized in motor neurons but in glial extensions that closely follow motor axons to the adult NMJ. Inactivation of the dEAAT1 gene by RNA interference generated viable adult flies that were able to walk but were flight-defective. Electrophysiological recordings of the thoracic dorso-lateral NMJ were performed in adult dEAAT1-deficient flies. The lack of dEAAT1 prolonged the duration of the individual responses to motor nerve stimulation and this effect was progressively increased during physiological trains of stimulations. Therefore, glutamate reuptake by glial cells is required to ensure normal activity of the Drosophila NMJ, but only in adult flies. © 2006 Wiley Periodicals, Inc. J Neurobiol, 2006 [source]


    Transcriptional regulation of the methionine and cysteine transport and metabolism in streptococci

    FEMS MICROBIOLOGY LETTERS, Issue 2 2007
    Galina Yu Kovaleva
    Abstract In streptococci, unlike other Firmicutes, methionine biosynthesis is controlled by protein transcription factors, rather than regulatory RNAs. It was observed that most available streptococcal genomes contain orthologs of two transcriptional regulators of the LysR family: MtaR/MetR and CmbR/FhuR. Comparative genomics techniques were applied to identify two binding motifs occurring upstream of genes involved in metabolism and transport of methionine and cysteine and satisfying the LysR family requirements. The distribution of candidate binding sites allowed to set the correspondence between motifs and regulators (TATAGTTTnAAACTATA for MtaR/MetR and TGATA-N9 -TATCA-N2,4 -TGATA for CmbR). Two amino acid transporters were predicted to belong to the cysteine (CmbR) regulon. At least two cases of potential regulator change were observed for orthologous genes of the methionine and cysteine pathway. [source]


    A proteomic study of Escherichia coli O157:H7 NCTC 12900 cultivated in biofilm or in planktonic growth mode

    FEMS MICROBIOLOGY LETTERS, Issue 1 2002
    Frédéric Trémoulet
    Abstract Escherichia coli 0157:H7 biofilms were studied by a new method of cultivation in order to identify some of the proteins involved in the biofilm phenotype. A proteomic analysis of sessile or planktonic bacteria of the same age was carried out by two-dimensional electrophoresis, matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF-MS) and database searching. Comparison of two-dimensional gels showed clear differences between protein patterns of sessile and planktonic cells. Fourteen proteins increased in biofilms, whereas three decreased. From these 17 proteins, 10 were identified by MALDI-TOF-MS and could be classified into four categories according to their function: (1) general metabolism proteins (malate dehydrogenase, thiamine-phosphate pyrophosphorylase), (2) sugar and amino acid transporters (d -ribose-binding periplasmic protein, d -galactose-binding protein, YBEJ), (3) regulator proteins (DNA starvation protein and H-NS) and (4) three proteins with unknown function. The results of this study showed that E. coli O157:H7 modified the expression of several proteins involved in biofilm growth mode. [source]


    Oxidative and excitotoxic insults exert differential effects on spinal motoneurons and astrocytic glutamate transporters: Implications for the role of astrogliosis in amyotrophic lateral sclerosis

    GLIA, Issue 2 2009
    Chrissandra J. Zagami
    Abstract In amyotrophic lateral sclerosis (ALS) non-neuronal cells play key roles in disease etiology and loss of motoneurons via noncell-autonomous mechanisms. Reactive astrogliosis and dysfunctional transporters for L -glutamate [excitatory amino acid transporters, (EAATs)] are hallmarks of ALS pathology. Here, we describe mechanistic insights into ALS pathology involving EAAT-associated homeostasis in response to a destructive milieu, in which oxidative stress and excitotoxicity induce respectively astrogliosis and motoneuron injury. Using an in vitro neuronal-glial culture of embryonic mouse spinal cord, we demonstrate that EAAT activity was maintained initially, despite a loss of cellular viability induced by exposure to oxidative [3-morpholinosydnonimine chloride (SIN-1)] and excitotoxic [(S)-5-fluorowillardiine (FW)] conditions. This homeostatic response of EAAT function involved no change in the cell surface expression of EAAT1/2 at 0.5,4 h, but rather alterations in kinetic properties. Over this time-frame, EAAT1/2 both became more widespread across astrocytic arbors in concert with increased expression of glial fibrillary acidic protein (GFAP), although at 8,24 h there was gliotoxicity, especially with SIN-1 rather than FW. An opposite picture was found for motoneurons where FW, not SIN-1, produced early and extensive neuritic shrinkage and blebbing (,0.5 h) with somata loss from 2 h. We postulate that EAATs play an early homeostatic and protective role in the pathologic milieu. Moreover, the differential profiles of injury produced by oxidative and excitotoxic insults identify two distinct phases of injury which parallel important aspects of the pathology of ALS. © 2008 Wiley-Liss, Inc. [source]


    Role of glial amino acid transporters in synaptic transmission and brain energetics

    GLIA, Issue 3 2004
    Paďkan Marcaggi
    Abstract This article reviews how the uptake of neurotransmitter by glial amino acid transporters limits the spatial spread of transmitter to preserve the independent operation of nearby synapses, temporally shapes postsynaptic currents, and regulates the effects of tonic transmitter release. We demonstrate the importance of amino acid uptake and recycling mechanisms for preventing the loss of energetically costly neurotransmitter from the brain, and also examine the suggestion that glutamate uptake into glia plays a key role in regulating the energy production of the brain. Finally, we assess the role of glial amino acid transporters in transmitter recycling pathways. © 2004 Wiley-Liss, Inc. [source]


    The Complementary Membranes Forming the Blood-Brain Barrier

    IUBMB LIFE, Issue 3 2002
    Richard A. Hawkins
    Abstract Brain capillary endothelial cells form the blood-brain barrier. They are connected by extensive tight junctions, and are polarized into luminal (blood-facing) and abluminal (brain-facing) plasma membrane domains. The polar distribution of transport proteins allows for active regulation of brain extracellular fluid. Experiments on isolated membrane vesicles from capillary endothelial cells of bovine brain demonstrated the polar arrangement of amino acid and glucose transporters, and the utility of such arrangements have been proposed. For instance, passive carriers for glutamine and glutamate have been found only in the luminal membrane of blood-brain barrier cells, while Na-dependent secondary active transporters are at the abluminal membrane. This organization could promote the net removal of nitrogen-rich amino acids from brain, and account for the low level of glutamate penetration into the central nervous system. Furthermore, the presence of a ,-glutamyl cycle at the luminal membrane and Na-dependent amino acid transporters at the abluminal membrane may serve to modulate movement of amino acids from blood-to-brain. Passive carriers facilitate amino acid transport into brain. However, activation of the ,-glutamyl cycle by increased plasma amino acids is expected to generate oxoproline within the blood-brain barrier. Oxoproline stimulates secondary active amino acid transporters (Systems A and B o,+ ) at the abluminal membrane, thereby reducing net influx of amino acids to brain. Finally, passive glucose transporters are present in both the luminal and abluminal membranes of the blood-brain barrier. Interestingly, a high affinity Na-dependent glucose carrier has been described only in the abluminal membrane. This raises the question whether glucose entry may be regulated to some extent. Immunoblotting studies suggest more than one type of passive glucose transporter exist in the blood-brain barrier, each with an asymmetrical distribution. In conclusion, it is now clear that the blood-brain barrier participates in the active regulation of brain extracellular fluid, and that the diverse functions of each plasma membrane domain contributes to these regulatory functions. [source]


    The position of an arginine residue influences substrate affinity and K+ coupling in the human glutamate transporter, EAAT1

    JOURNAL OF NEUROCHEMISTRY, Issue 2 2010
    Renae M. Ryan
    J. Neurochem. (2010) 114, 565,575. Abstract Glutamate is the predominant excitatory neurotransmitter in the mammalian central nervous system and extracellular glutamate levels are controlled by a family of transporters known as excitatory amino acid transporters (EAATs). The EAATs transport glutamate and aspartate with similar micromolar affinities and this transport is coupled to the movement of Na+, K+, and H+. The crystal structure of a prokaryotic homologue of the EAATs, aspartate transporter from Pyrococcus horokoshii (GltPh), has yielded important insights into the architecture of this transporter family. GltPh is a Na+ -dependent transporter that has significantly higher affinity for aspartate over glutamate and is not coupled to H+ or K+. The highly conserved carboxy-terminal domains of the EAATs and GltPh contain the substrate and ion binding sites, however, there are a couple of striking differences in this region that we have investigated to better understand the transport mechanism. An arginine residue is in close proximity to the substrate binding site of both GltPh and the EAATs, but is located in transmembrane domain (TM) 8 in the EAATs and hairpin loop 1 (HP1) of GltPh. Here we report that the position of this arginine residue can explain some of the functional differences observed between the EAATs and GltPh. Moving the arginine residue from TM8 to HP1 in EAAT1 results in a transporter that has significantly increased affinity for both glutamate and aspartate and is K+ independent. Conversely, moving the arginine residue from HP1 to TM8 in GltPh results in a transporter that has reduced affinity for aspartate. [source]


    Preferential vulnerability of mesencephalic dopamine neurons to glutamate transporter dysfunction

    JOURNAL OF NEUROCHEMISTRY, Issue 2 2008
    Imane Nafia
    Abstract Nigral depletion of the main brain antioxidant GSH is the earliest biochemical event involved in Parkinson's disease pathogenesis. Its causes are completely unknown but increasing number of evidence suggests that glutamate transporters [excitatory amino acid transporters (EAATs)] are the main route by which GSH precursors may enter the cell. In this study, we report that dopamine (DA) neurons, which express the excitatory amino acid carrier 1, are preferentially affected by EAAT dysfunction when compared with non-DA neurons. In rat embryonic mesencephalic cultures, l -trans-pyrrolidine-2,4-dicarboxylate, a substrate inhibitor of EAATs, is directly and preferentially toxic for DA neurons by decreasing the availability of GSH precursors and lowering their resistance threshold to glutamate excitotoxicity through NMDA-receptors. In adult rat, acute intranigral injection of l -trans-pyrrolidine-2,4-dicarboxylate induces a large regionally selective and dose-dependent loss of DA neurons and ,-synuclein aggregate formation. These data highlight for the first time the importance of excitatory amino acid carrier 1 function for the maintenance of antioxidant defense in DA neurons and suggest its dysfunction as a candidate mechanism for the selective death of DA neurons such as occurring in Parkinson's disease. [source]


    Differing effects of substrate and non-substrate transport inhibitors on glutamate uptake reversal

    JOURNAL OF NEUROCHEMISTRY, Issue 6 2001
    Christopher M. Anderson
    Na+ -dependent excitatory amino acid transporters (EAATs) normally function to remove extracellular glutamate from brain extracellular space, but EAATs can also increase extracellular glutamate by reversal of uptake. Effects of inhibitors on EAATs can be complex, depending on cell type, whether conditions favor glutamate uptake or uptake reversal and whether the inhibitor itself is a substrate for the transporters. The present study assessed EAAT inhibitors for their ability to inhibit glutamate uptake, act as transporter substrates and block uptake reversal in astrocyte and neuron cultures. lthreo -,-hydroxyaspartate (l -TBHA), dlthreo -,-benzyloxyaspartate (dl -TBOA), ltrans -pyrrolidine-2,4-dicarboxylic acid (ltrans -2,4-PDC) (+/,)- cis -4-methy- trans -pyrrolidine-2,4-dicarboxylic acid (cis -4-methy- trans -2,4-PDC) and lantiendo -3,4-methanopyrrolidine-2,4-dicarboxylic acid (lantiendo -3,4-MPDC) inhibited l -[14C]glutamate uptake in astrocytes with equilibrium binding constants ranging from 17 µm (dl -TBOA and l -TBHA) , 43 µm (cis -4-methy- trans -2,4-PDC). Transportability of inhibitors was assessed in astrocytes and neurons. While l -TBHA, ltrans -2,4-PDC, cis -4-methy- trans -2,4-PDC and lantiendo -3,4-MPDC displayed significant transporter substrate activities in neurons and astrocytes, dl -TBOA was a substrate only in astrocytes. This effect of dl -TBOA was concentration-dependent, leading to complex effects on glutamate uptake reversal. At concentrations low enough to produce minimal dl -TBOA uptake velocity (, 10 µm), dl -TBOA blocked uptake reversal in ATP-depleted astrocytes; this blockade was negated at concentrations that drove substantial dl -TBOA uptake (> 10 µm). These findings indicate that the net effects of EAAT inhibitors can vary with cell type and exposure conditions. [source]


    Inhibition of the Activity of Excitatory Amino Acid Transporter 4 Expressed in Xenopus Oocytes After Chronic Exposure to Ethanol

    ALCOHOLISM, Issue 7 2008
    Seung-Yeon Yoo
    Background:, The extracellular glutamate concentration is tightly controlled by excitatory amino acid transporters (EAATs). EAAT4 is the predominant EAAT in the cerebellar Purkinje cells. Purkinje cells play a critical role in motor coordination and may be an important target for ethanol to cause motor impairments. We designed this study to determine the effects of chronic ethanol exposure on the activity of EAAT4 and evaluate the involvement of protein kinase C (PKC) and phosphatidylinositol 3-kinase (PI3K) in these effects. Methods:, EAAT4 was expressed in Xenopus oocytes following injection of EAAT4 mRNA. Oocytes were incubated with ethanol-containing solution for 24 to 96 hours. Membrane currents induced by l -aspartate were recorded using 2-electrode voltage clamps. Responses were quantified by integration of the current trace and reported in microCoulombs (,C). Results:, Ethanol dose- and time-dependently reduced EAAT4 activity. EAAT4 activity after a 96-hour exposure was significantly decreased compared to the control values at all concentrations tested (10 to 100 mM). Ethanol (50 mM) significantly decreased the Vmax (2.2 ± 0.2 ,C for control vs. 1.6 ± 0.2 ,C for ethanol, n = 18, p < 0.05) of EAAT4 for l -aspartate. Preincubation of ethanol-treated (50 mM for 96 hours) oocytes with phorbol-12-myrisate-13-acetate (100 nM for 10 minutes) abolished the ethanol-induced decrease in EAAT4 activity. While staurosporine (2 ,M for 1 hour) or chelerythrine (100 ,M for 1 hour) significantly decreased EAAT4 activity, no difference was observed in EAAT4 activity among the staurosporine, ethanol, or ethanol plus staurosporine groups. Similarly, EAAT4 activity did not differ among the chelerythrine, ethanol, or ethanol plus chelerythrine groups. Pretreatment of the oocytes with wortmannin (1 ,M for 1 hour) also significantly decreased EAAT4 activity. However, no difference was observed in the wortmannin, ethanol, or ethanol plus wortmannin groups. Conclusions:, The results of this study suggest that chronic ethanol exposure decreases EAAT4 activity and that PKC and PI3K may be involved in these effects. These effects of ethanol on EAAT4 may cause an increase in peri-Purkinje cellular glutamate concentration, and may be involved in cerebellar dysfunction and motor impairment after chronic ethanol ingestion. [source]


    NF-,B involvement in the induction of high affinity CAT-2 in lipopolysaccharide-stimulated rat lungs

    ACTA ANAESTHESIOLOGICA SCANDINAVICA, Issue 8 2004
    C.-J. Huang
    Background:, Endotoxemia stimulates nitric oxide (NO) biosynthesis through induction of inducible NO synthase (iNOS). Cellular uptake of l -arginine, the sole substrate for iNOS, is an important mechanism regulating NO biosynthesis by iNOS. The isozymes of type-2 cationic amino acid transporters, including CAT-2, CAT-2A, and CAT-2B, constitute the most important pathways responsible for trans -membrane l -arginine transportation. Therefore, regulation of CAT-2 isozymes expression may constitute one of the downstream regulatory pathways that control iNOS activity. We investigated the time course of enzyme induction and the role of nuclear factor-,B (NF-,B) in CAT-2 isozymes expression in lipopolysaccharide-(LPS) treated rat lungs. Methods:, Adult male Sprague,Dawley rats were randomly given intravenous injections of normal saline (N/S), LPS, LPS plus NF-,B inhibitor pre-treatment (PDTC, dexamethasone, or salicylate), or an NF-,B inhibitor alone. The rats were sacrificed at different times after injection and enzyme expression and lung injury were examined. Pulmonary and systemic NO production were also measured. Results:, LPS co-induced iNOS, CAT-2, and CAT-2B but not CAT-2A expression in the lungs. Furthermore, NF-,B actively participated in LPS-induction of iNOS, CAT-2, and CAT-2B. LPS induced pulmonary and systemic NO overproduction and resulted in lung injuries. Attenuation of LPS-induced iNOS, CAT-2, and CAT-2B induction significantly inhibited NO biosynthesis and lessened lung injury. Conclusion:, NF-,B actively participates in the induction of CAT-2 and CAT-2B in intact animals. Our data further support the idea that CAT-2 and CAT-2B are crucial in regulating iNOS activity. [source]


    Characterization of a developmentally regulated amino acid transporter (AAT1p) of the rust fungus Uromyces fabae

    MOLECULAR PLANT PATHOLOGY, Issue 1 2002
    Christine Struck
    summary In the rust fungus Uromyces fabae, invasion of the host plant and haustorium formation are accompanied by the activation of many genes (PIGs =in planta induced genes). In addition to the previously described AAT2 (PIG2), AAT1 (PIG27) was found to encode a protein with a high similarity to fungal amino acid permeases. AAT1 transcripts are present in germinated hyphae and throughout the mycelium later in the infection process, but occur at the highest levels in haustoria. Expression of AAT1p in a histidine uptake-defective yeast mutant revealed energy-dependent transport of 14C-histidine, with a KM value of 25.8 µm. In addition, complementation analysis revealed AAT1 -dependent transport for lysine. Using Xenopus oocytes as expression system, AAT1p-dependent symport of protons with a broad spectrum of amino acids was observed, with the highest activities obtained with histidine and lysine. These results confirm that in rust fungi, the expression of amino acid transporters is developmentally regulated and occurs preferentially in the parasitic phase of development. [source]