Amino Acid Biosynthetic Pathways (amino + acid_biosynthetic_pathway)

Distribution by Scientific Domains


Selected Abstracts


Dynamics of genome evolution in facultative symbionts of aphids

ENVIRONMENTAL MICROBIOLOGY, Issue 8 2010
Patrick H. Degnan
Summary Aphids are sap-feeding insects that host a range of bacterial endosymbionts including the obligate, nutritional mutualist Buchnera plus several bacteria that are not required for host survival. Among the latter, ,Candidatus Regiella insecticola' and ,Candidatus Hamiltonella defensa' are found in pea aphids and other hosts and have been shown to protect aphids from natural enemies. We have sequenced almost the entire genome of R. insecticola (2.07 Mbp) and compared it with the recently published genome of H. defensa (2.11 Mbp). Despite being sister species the two genomes are highly rearranged and the genomes only have ,55% of genes in common. The functions encoded by the shared genes imply that the bacteria have similar metabolic capabilities, including only two essential amino acid biosynthetic pathways and active uptake mechanisms for the remaining eight, and similar capacities for host cell toxicity and invasion (type 3 secretion systems and RTX toxins). These observations, combined with high sequence divergence of orthologues, strongly suggest an ancient divergence after establishment of a symbiotic lifestyle. The divergence in gene sets and in genome architecture implies a history of rampant recombination and gene inactivation and the ongoing integration of mobile DNA (insertion sequence elements, prophage and plasmids). [source]


The role of the yeast plasma membrane SPS nutrient sensor in the metabolic response to extracellular amino acids

MOLECULAR MICROBIOLOGY, Issue 1 2001
Hanna Forsberg
In response to discrete environmental cues, Saccharomyces cerevisiae cells adjust patterns of gene expression and protein activity to optimize metabolism. Nutrient-sensing systems situated in the plasma membrane (PM) of yeast have only recently been discovered. Ssy1p is one of three identified components of the Ssy1p,Ptr3p,Ssy5 (SPS) sensor of extracellular amino acids. SPS sensor-initiated signals are known to modulate the expression of a number of amino acid and peptide transporter genes (i.e. AGP1, BAP2, BAP3, DIP5, GAP1, GNP1, TAT1, TAT2 and PTR2) and arginase (CAR1). To obtain a better understanding of how cells adjust metabolism in response to extracellular amino acids in the environment and to assess the consequences of loss of amino acid sensor function, we investigated the effects of leucine addition to wild-type and ssy1 null mutant cells using genome-wide transcription profile analysis. Our results indicate that the previously identified genes represent only a subset of the full spectrum of Ssy1p-dependent genes. The expression of several genes encoding enzymes in amino acid biosynthetic pathways, including the branched-chain, lysine and arginine, and the sulphur amino acid biosynthetic pathways, are modulated by Ssy1p. Additionally, the proper transcription of several nitrogen-regulated genes, including NIL1 and DAL80, encoding well-studied GATA transcription factors, is dependent upon Ssy1p. Finally, several genes were identified that require Ssy1p for wild-type expression independently of amino acid addition. These findings demonstrate that yeast cells require the SPS amino acid sensor component, Ssy1p, to adjust diverse cellular metabolic processes properly. [source]


Study of stationary phase metabolism via isotopomer analysis of amino acids from an isolated protein

BIOTECHNOLOGY PROGRESS, Issue 1 2010
Afshan S. Shaikh
Abstract Microbial production of many commercially important secondary metabolites occurs during stationary phase, and methods to measure metabolic flux during this growth phase would be valuable. Metabolic flux analysis is often based on isotopomer information from proteinogenic amino acids. As such, flux analysis primarily reflects the metabolism pertinent to the growth phase during which most proteins are synthesized. To investigate central metabolism and amino acids synthesis activity during stationary phase, addition of fully 13C-labeled glucose followed by induction of green fluorescent protein (GFP) expression during stationary phase was used. Our results indicate that Escherichia coli was able to produce new proteins (i.e., GFP) in the stationary phase, and the amino acids in GFP were mostly from degraded proteins synthesized during the exponential growth phase. Among amino acid biosynthetic pathways, only those for serine, alanine, glutamate/glutamine, and aspartate/asparagine had significant activity during the stationary phase. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2010 [source]