Amine Production (amine + production)

Distribution by Scientific Domains


Selected Abstracts


Physiological and oenological traits of different Dekkera/Brettanomyces bruxellensis strains under wine-model conditions

FEMS YEAST RESEARCH, Issue 7 2008
Ileana Vigentini
Abstract Contamination of wine by Dekkera/Brettanomyces bruxellensis is mostly due to the production of off-flavours identified as vinyl- and especially ethyl-phenols, but these yeasts can also produce several other spoiling metabolites, such as acetic acid and biogenic amines. Little information is available about the correlation between growth, viability and off-flavour and biogenic amine production. In the present work, five strains of Dekkera bruxellensis isolated from wine were analysed over 3 months in wine-like environment for growth, cell survival, carbon source utilization and production of volatile phenols and biogenic amines. Our data indicate that the wine spoilage potential of D. bruxellensis is strain dependent, being strictly associated with the ability to grow under oenological conditions. 4-Ethyl-phenol and 4-ethyl-guaiacol production ranged between 0 and 2.7 and 2 mg L,1, respectively, depending on the growth conditions. Putrescine, cadaverine and spermidine were the biogenic amines found. [source]


Presence of biogenic amines in a traditional salted Italian cheese

INTERNATIONAL JOURNAL OF DAIRY TECHNOLOGY, Issue 2 2009
N INNOCENTE
Asino cheese is a traditional Italian cheese ripened in a special dilute brine (salmuerie), mixed with whey, milk and milk cream. The aim of this work was to ascertain whether this processing technology can influence amine production. The study demonstrated that biogenic amine content increased gradually in the Asino cheese during the soaking phase in brine. Moreover, the biogenic amine content of the salmuerie was very high and the salmuerie and the Asino cheese had a similar relative profile in amine content. These results suggested that the biogenic amines migrate from the brine into the cheese as a result of the concentration differential existing between the two systems. [source]


PROTECTIVE CULTURES USED FOR THE BIOPRESERVATION OF HORSE MEAT FERMENTED SAUSAGE: MICROBIAL AND PHYSICOCHEMICAL CHARACTERIZATION

JOURNAL OF FOOD SAFETY, Issue 3 2008
JAZILA EL MALTI
ABSTRACT In this paper, 150 isolates, originating from horse meat, were subjected to step-by-step screening and characterization to search for potential protective cultures to be used in the meat industry. Isolates were first tested on their homofermentative and salt tolerance. Second, the antibacterial capacities toward Listeria monocytogenes were determined in an agar spot test. In total, 50% of the tested isolates were inhibitory toward Listeria monocytogenes. However, only 12 isolates produced a bacteriocin. Finally, three isolates with the strong bacteriocin activity were evaluated on their competitive nature by comparing their growth rate, acidifying character and lactic acid production at 15C under anaerobic conditions in a liquid broth. All three isolates combined a fast growth rate with a deep and rapid acidification caused by the production of high levels of lactic acid. Lactobacillus sakei was used as starter culture for producing sausage horse meat. In this study, fermentations were followed analyzing the microbiological and physicochemical aspects of this product. The sausages were characterized by an important microbial activity of lactic acid bacteria that resulted in a product with a final pH of about 4.56. No Listeria monocytogenes, Salmonella spp. or sulfite reducing clostridia were ever isolated from the raw materials or the fermented sausages during the maturation, underlining the microbial safety of this product. The final water activity of the product was 0.85. Starter cultures showed that Lactobacillus sakei was really efficient in reducing the amine production since this strain caused a quick pH drop during sausage fermentation. PRACTICAL APPLICATIONS A starter culture can be defined as a microbial preparation of large numbers of cells of at least one microorganism to be added to a raw material to produce a fermented food by accelerating and steering its fermentation process. The group of lactic acid bacteria (LAB) occupies a central role in these processes, and has a long and safe history of application and consumption in the production of fermented foods and beverages. They cause rapid acidification of the raw material through the production of organic acids, mainly lactic acid. Also, their production of acetic acid, ethanol, aroma compounds, bacteriocins, exopolysaccharides and several enzymes is of importance. The main reason for suitability of LAB is their natural origin, and they can contribute to food safety and/or offer one or more organoleptic, technological, nutritional or health advantages. [source]


Biogenic amine production by lactic acid bacteria isolated from cider

LETTERS IN APPLIED MICROBIOLOGY, Issue 5 2007
G. Garai
Abstract Aims:, To study the occurrence of histidine, tyrosine and ornithine decarboxylase activity in lactic acid bacteria (LAB) isolated from natural ciders and to examine their potential to produce detrimental levels of biogenic amines. Methods and Results:, The presence of biogenic amines in a decarboxylase synthetic broth and in cider was determined by reversed-phase high-performance liquid chromatography (RP-HPLC). Among the 54 LAB strains tested, six (five lactobacilli and one oenococci) were biogenic amine producers in both media. Histamine and tyramine were the amines formed by the LAB strains investigated. Lactobacillus diolivorans were the most intensive histamine producers. This species together with Lactobacillus collinoides and Oenococcus oeni also seemed to produce tyramine. No ability to form histamine, tyramine or putrescine by Pediococus parvulus was observed, although it is a known biogenic amine producer in wines and beers. Conclusions:, This study demonstrated that LAB microbiota growing in ciders had the ability to produce biogenic amines, particularly histamine and tyramine, and suggests that this capability might be strain-dependent rather than being related to a particular bacterial species. Significance and Impact of the Study:, Production of biogenic amines by food micro-organisms has continued to be the focus of intensive study because of their potential toxicity. The main goal was to identify the microbial species capable of producing these compounds in order to control their presence and metabolic activity in foods. [source]


Biochemical properties of Streptococcus macedonicus strains isolated from Greek Kasseri cheese

JOURNAL OF APPLIED MICROBIOLOGY, Issue 5 2000
M.D. Georgalaki
A total of 32 Streptococcus macedonicus strains, isolated from Greek Kasseri cheese, were screened for biochemical properties of technological importance in milk fermentation processing, such as acid production, proteolytic and lipolytic activity, citrate metabolism, exopolysaccharide production, antimicrobial activity and biogenic amines production. All strains were found to be moderate acidifiers in milk. Only four strains could hydrolyse milk casein, while 11 strains showed lipolytic activity against tributyrin. Using amino acid derivatives of 4-nitroaniline as substrates, the highest peptidase activities were determined against phenylalanine- and glycine-proline-4-nitroanilide. Using fatty acid derivatives of 4-nitrophenol, it was shown that all strains exhibited esterase activities up to caprylate, with highest values against butyrate and caproate. Only one showed activity up to palmitate; this was also the most active strain against tributyrin. Five of the 32 strains could metabolize citrate but none of them produced exopolysaccharides. Nine strains displayed antimicrobial activity towards Clostridium tyrobutyricum, while no antimicrobial activity was detected against Listeria innocua and Propionibacterium freudenreichii subsp. shermanii. Finally, none was able to decarboxylize ornithine, histidine or lysine, and only four strains produced tyramine from tyrosine. [source]