Ambient

Distribution by Scientific Domains
Distribution within Life Sciences

Terms modified by Ambient

  • ambient air
  • ambient air pollution
  • ambient air temperature
  • ambient atmosphere
  • ambient ca concentration
  • ambient co2
  • ambient co2 concentration
  • ambient concentration
  • ambient condition
  • ambient conditions.
  • ambient control
  • ambient environment
  • ambient level
  • ambient light
  • ambient light condition
  • ambient medium
  • ambient noise
  • ambient ozone
  • ambient ph
  • ambient pressure
  • ambient relative humidity
  • ambient solar radiation
  • ambient temperature
  • ambient temperature condition
  • ambient uv-b radiation
  • ambient water
  • ambient water temperature

  • Selected Abstracts


    Ambient and temperature dependent electric properties of backgate graphene transistors

    PHYSICA STATUS SOLIDI (B) BASIC SOLID STATE PHYSICS, Issue 4 2010
    Christian Hummel
    Abstract The electrical behavior of backgate graphene field effect (GFET) transistor was studied at different ambient conditions. Backgate p-channel GFET transistors were fabricated on oxidized silicon wafers by exfoliation of graphite. The carrier mobilities were determined from the measured transconductance. For all ambients investigated (N2, Ar, and air), the graphene transistors show enhanced mobilities at elevated temperatures. This behavior can be explained by a stronger screening of scattering centers, i.e., defects in graphene and at the graphene oxide interface, with increasing temperature. For operation in air the transistors showed a higher transconductance compared to the operation in nitrogen and argon due to the strong acceptor-like behavior of gases adsorbed on the graphene surface. Effect of temperature and ambient on the output characteristic of a backgate GFET. [source]


    Ionic Liquid Enable Sulfamoylation of Arenes: An Ambient, Expeditious and Regioselective Protocol for Aryl Sulfonamides.

    CHEMINFORM, Issue 20 2004
    Prashant U. Naik
    Abstract For Abstract see ChemInform Abstract in Full Text. [source]


    Characteristics, context and risk: NGO insecurity in confict zones

    DISASTERS, Issue 2 2007
    Larissa Fast
    This paper reports on research conducted on the insecurity of non-governmental organisations (NGOs) between 1999 and 2002, with the goal of contributing to the debate on the reasons why NGO actors are targets of violence in confict settings. The research involved the collection of data from three countries,Angola, Ecuador and Sierra Leone,and exploration of the relationship between levels of insecurity, context and the characteristics of NGOs. Four risk factors appear to heighten the degree of insecurity that NGOs face: (1) carrying out multiple types of activities and providing material aid; (2),operationality'(that is, implementing programmes and activities); (3) working with both sides of the confict; and (4) integrating into the local community. The paper discusses the methodological approach adopted for the research, the differences between ambient and situational insecurity and the fndings related to risk factors. It concludes with a summary of the study's implications. [source]


    Influence of atmospheric carbon dioxide enrichment on induced response and growth compensation after herbivore damage in Lotus corniculatus

    ECOLOGICAL ENTOMOLOGY, Issue 3 2002
    Alain Bazin
    Abstract 1. Plant growth and chemical defence compounds in four Lotus corniculatus genotypes exposed to factorial combinations of ambient and elevated carbon dioxide, and herbivory by caterpillars of Polyommatus icarus were measured to test the predictions of the carbon/nutrient balance hypothesis. 2. Shoot and root biomass, allocation to shoots versus roots, and carbon-based defence compounds were greater under elevated carbon dioxide. Pupal weight of P. icarus was greater and development time shorter under elevated carbon dioxide. 3. Herbivory decreased shoot growth relative to root growth and production of nitrogen-based defence (cyanide). Young leaves contained more defence compounds than old leaves, and this response depended on carbon dioxide and herbivory treatments (significant interactions). 4. Genotype-specific responses of plants to carbon dioxide and herbivory were found for the production of cyanide. Furthermore, maternal butterfly-specific responses of caterpillars to carbon dioxide were found for development time. This suggests the existence of genetic variation for important defence and life-history traits in plants and herbivores in response to rising carbon dioxide levels. [source]


    Stacking and low-temperature technique in nonaqueous capillary electrophoresis for the analysis of 3,4-methylenedioxymethamphetamine

    ELECTROPHORESIS, Issue 10-11 2004
    Chih-Hsin Tsai
    Abstract Low-temperature and ambient-temperature nonaqueous stacking techniques in capillary electrophoresis (CE) are described for the first time. A low-temperature bath was used to control the temperature from ambient to subzero degrees, by which a novel hyphenated method, low-temperature bath-nonaqueous capillary electrophoresis stacking (LTB-NACE stacking) is demonstrated. 3,4-Methylenedioxymethamphetamine (3,4-MDMA) was determined at a concentration of 4.7×10,6 M (at a 92.1% confidence level) by normal nonaqueous capillary zone electrophoresis (NACZE) and this was improved to 2.6×10,8 M and 5.0×10,9 M, respectively, when the NACZE stacking and LTB-NACZE stacking techniques were applied. The content of 3,4-MDMA in an illicit drug and a suspect urine sample was readily detected. Upon application of the LTB to the separation of isomers the resolution (R) for the separation of 2,3-/3,4-MDMA was improved from 0.6 (LTB, 22°C) to 1.6 (LTB, ,55°C) and for (+)3,4-MDMA/(,)3,4-MDMA, from 0.4 (LTB, 25°C) to 1.0 (LTB, ,10°C). [source]


    Effects of elevated CO2 associated with maize on multiple generations of the cotton bollworm, Helicoverpa armigera

    ENTOMOLOGIA EXPERIMENTALIS ET APPLICATA, Issue 1 2010
    Jin Yin
    Abstract Under elevated environmental carbon dioxide (CO2), leaf chewers tend to compensate for decreased leaf nutritional quality with increased consumption; mortality and development times also increase and cause a reduction in the fitness of leaf chewers. However, the effect of elevated CO2 on multiple successive generations of these and other insects is not well understood. Furthermore, information about the direct effects of increased environmental CO2 on developmental time and consumption of herbivores is lacking. In this paper, we tested the hypothesis that cascade effects of elevated CO2 through plants, rather than the direct effects of elevated CO2, are the main factors decreasing the fitness of cotton bollworm, Helicoverpa armigera Hübner (Lepidoptera: Noctuidae). We used two series of experiments to quantify the growth, development, and consumption of H. armigera fed on an artificial diet or C4 plants (maize) grown under two CO2 levels (ambient vs. double ambient). In the first series of experiments, elevated CO2 had no effect on the population abundance or individual consumption for three successive generations of cotton bollworms fed on an artificial diet. In the second series of experiments, elevated CO2 reduced population abundance of cotton bollworm larvae for two successive generations when they were fed maize milky grains. The specific effects were longer larval duration, lower fecundity, and decreased rm of cotton bollworms. Furthermore, elevated CO2 increased individual consumption when cotton bollworm was fed maize milky grains for two successive generations and decreased the population's total consumption in the first generation but increased it in the second generation. The results from this study indicate that: (1) The effects of elevated CO2 on three successive generations of cotton bollworm fed on artificial diet were weak, or even non-existent, and (2) elevated CO2 increased the consumption when cotton bollworm were fed maize. Our study also suggests that the damage inflicted by cotton bollworm on maize (a C4 plant) will be seriously affected by the increases in atmospheric CO2, which is unlike our previous results for spring wheat (a C3 plant). [source]


    Polysaccharide hydrolysis in aggregates and free enzyme activity in aggregate-free seawater from the north-eastern Gulf of Mexico

    ENVIRONMENTAL MICROBIOLOGY, Issue 2 2008
    Kai Ziervogel
    Summary Marine snow aggregates represent hotspots of carbon remineralization in the ocean. Various aspects of bacterial dynamics have been investigated on marine snow. To date, extracellular enzymatic activities in aggregates have been measured using small substrate proxies that do not adequately reflect the complexity of biomacromolecules such as polysaccharides, proteins and lipids. To address this issue, we used six structurally distinct, fluorescently labelled polysaccharides to measure enzymatic hydrolysis on aggregates formed with a roller table and in aggregate-free (ambient) seawater from two near-coast sites, north-eastern Gulf of Mexico. A single polysaccharide was incubated in aggregates and ambient seawater. Changes in polysaccharide molecular weight were monitored over time to measure the course of enzymatic hydrolysis. All six polysaccharides were hydrolysed in aggregates, indicating a broad range of enzyme activities in aggregate-associated bacteria. Four substrates were also hydrolysed in ambient waters. Epifluorescence microscopy revealed that nearly all of the bacteria present in original waters were incorporated into aggregates. Therefore hydrolytic activities in ambient waters were presumably due to enzymes spatially disconnected from cells and aggregates. Our results show substantial enzymatic activity in cell/aggregate-free seawater, suggesting a significant role of free enzymes in hydrolytic activity in waters from the north-eastern Gulf of Mexico. [source]


    Synthesis and Photophysical Properties of LnIII,DOTA,Bipy Complexes and LnIII,DOTA,Bipy,RuII Coordination Conjugates

    EUROPEAN JOURNAL OF INORGANIC CHEMISTRY, Issue 28 2010
    Miguel Vázquez López
    Abstract The synthesis and the systematic and comparative photophysical study of a series of visible (EuIII, TbIII) and NIR-emitting (NdIII, YbIII) lanthanide complexes (Ln2L) and ruthenium,lanthanide coordination conjugates (Ln2LRu) are reported. The GdIII complex, the GdIII,RuII coordination conjugate, as well as the RuII complex of the ligand H6L have also been synthesized and photophysically studied as control systems. The ligand H6L, composed of a central bipyridine binding unit and functionalized on each 5,-position with a DOTA macrocycle, has been successfully synthesized from cyclen, 5,5,-dimethyl-2,2,-bipyridine and 1,2-ethylendiamine in a nine-step process. Detailed luminescence studies of all complexes, including the determination of the quantum yield and lifetime, were carried out on finely powdered microcrystalline samples as well as in water, deuterated water and [D6]DMSO at ambient (295 K) and low temperature (77 K). The photophysical data corroborate the existence of energy transfer in the Ln2L complexes and in the Nd2LRu coordination conjugate. However, no (or at most, very little) energy transfer is takes place from the Ru(bipy)3 chromophore to the LnIII ion in the other Ln2LRu heteropolymetallic complexes. Moreover, the photophysical studies reveal that all the complexes and coordination conjugates adopt different conformations and hydration states in solution and in the solid state, which influences the efficiency of the energy transfer between the bipy and/or Ru(bipy)3 antennae and the LnIII ions. [source]


    Use of Molecular Scaffolding for the Stabilization of an Intramolecular Dative PIII -PV System

    EUROPEAN JOURNAL OF INORGANIC CHEMISTRY, Issue 2 2003
    Petr Kilian
    Abstract The reaction of NapP2S4 (1; Nap = naphthalene-1,8-diyl) with chlorine gas gave [Nap(PCl2)(PCl4)] (2), displaying a rare ,4P-,6P bonding interaction. An X-ray structure analysis confirmed the PCl5 -like, P,P bond containing phosphonium-phosphoride structure of 2 in the crystal, which was also found in solution at low temperature. At ambient and higher temperatures, dynamic behaviour on the NMR time-scale was observed, which was assigned to interchange of the ionic phosphonium-phosphoride form 2 and the molecular bis(phosphorane) Nap(PCl3)2 form 3, rather than to the ionic phosphonium salt-phosphorane form [Nap(PCl3)(PCl2)][Cl] 4. Electronic structure calculations were performed at the B3LYP/6,31G(d,p) level of theory on structures 2 and 3; structure 3 was located as a local minimum on the potential energy surface, 15 kcal·mol,1 higher in energy than structure 2. The crystal structure and calculated P,P distances are 2.34 and 2.31 Ĺ for 2 and 3, respectively. An activation energy of 19.7 kcal·mol,1 was found for the transition state structure by coordinate driving calculations; the line-shape analysis of variable temperature 31P{1H} NMR spectra gave an activation energy of 14.4 kcal·mol,1. (© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2003) [source]


    Effects of Temperatures on Inhomogeneous Plastic Flows of a Bulk-Metallic Glass,

    ADVANCED ENGINEERING MATERIALS, Issue 11 2008
    H. Jiang
    The effects of temperatures on plastic flow and shear banding of a bulk-metallic glass in compression were investigated. Temperature significantly affects the plastic-flow and shear-banding behaviors. With increasing temperatures from the ambient, the plastic deformation tends to become homogeneous both in time and space; while decreasing temperature from the ambient, it tends to be less inhomogeneous in time, but more inhomogeneous in space. Plastic flow is related to shear banding. [source]


    Modelling the response of sprinklers in compartment fires

    FIRE AND MATERIALS, Issue 3 2001
    A. K. Gupta
    Alpert's expressions are used extensively to calculate the maximum temperature and velocity in the ceiling-jet at any distance, r, from the fire axis. These expressions are valid for unconfined ceilings insofar as the environment outside the ceiling-jet is uniform in temperature and is atmospheric ambient. In compartments the outward flow of hot gases is checked by the presence of bounding walls and so a layer of hot gases is formed in the upper portion of the compartment. The environment outside the ceiling-jet is no longer ambient atmospheric. Expressions due to Alpert becomes unsuitable, unless the effects of the accumulated hot layer are included in these expressions. The effect of the upper layer temperature has been taken by assuming that since the ceiling-jet is completely submerged in the upper hot gas layer, the entrained gases are drawn from this layer only instead of the ambient atmospheric air at T,. Thus T, has been replaced by TL in the Alpert's empirical expression for ceiling-jet temperatures. The proposed equation is then used to calculate the response time of sprinklers fitted in compartments of varying sizes. Calculations have been done for identical conditions to those employed by Evans and compared. Comparison has also been made with Cooper's LAVENT model predictions. The study shows that the present model is capable of predicting the maximum, as well as average, temperatures in the ceiling-jets submerged in the hot gas layer. Copyright © 2001 John Wiley & Sons, Ltd. [source]


    Horizontal and vertical movements of juvenile bluefin tuna (Thunnus orientalis) in relation to seasons and oceanographic conditions in the eastern Pacific Ocean

    FISHERIES OCEANOGRAPHY, Issue 5 2007
    TAKASHI KITAGAWA
    Abstract Electronically tagged juvenile Pacific bluefin, Thunnus orientalis, were released off Baja California in the summer of 2002. Time-series data were analyzed for 18 fish that provided a record of 380 ± 120 days (mean ± SD) of ambient water and peritoneal cavity temperatures at 120 s intervals. Geolocations of tagged fish were estimated based on light-based longitude and sea surface temperature-based latitude algorithms. The horizontal and vertical movement patterns of Pacific bluefin were examined in relation to oceanographic conditions and the occurrence of feeding events inferred from thermal fluctuations in the peritoneal cavity. In summer, fish were located primarily in the Southern California Bight and over the continental shelf of Baja California, where juvenile Pacific bluefin use the top of the water column, undertaking occasional, brief forays to depths below the thermocline. In autumn, bluefin migrated north to the waters off the Central California coast when thermal fronts form as the result of weakened equatorward wind stress. An examination of ambient and peritoneal temperatures revealed that bluefin tuna fed during this period along the frontal boundaries. In mid-winter, the bluefin returned to the Southern California Bight possibly because of strong downwelling and depletion of prey species off the Central California waters. The elevation of the mean peritoneal cavity temperature above the mean ambient water temperature increased as ambient water temperature decreased. The ability of juvenile bluefin tuna to maintain a thermal excess of 10°C occurred at ambient temperatures of 11,14°C when the fish were off the Central California coast. This suggests that the bluefin maintain peritoneal temperature by increasing heat conservation and possibly by increasing internal heat production when in cooler waters. For all of the Pacific bluefin tuna, there was a significant correlation between their mean nighttime depth and the visible disk area of the moon. [source]


    Diving behavior of immature, feeding Pacific bluefin tuna (Thunnus thynnus orientalis) in relation to season and area: the East China Sea and the Kuroshio,Oyashio transition region

    FISHERIES OCEANOGRAPHY, Issue 3 2004
    Takashi Kitagawa
    Abstract Twenty-four archival tags were recovered from Pacific bluefin tuna previously released off Tsushima Island in the East China Sea. By analysis of the time-series data of the pressure and the ambient and internal temperature from the 24 tags, we examined the relationship between the tuna's pattern of diving and the thermocline depth. In the East China Sea, diving and feeding events occurred throughout almost the entire day in both winter and summer, suggesting that the purpose of diving is for feeding. In summer, the feeding frequency was greater than that in winter, which corresponds to the fact that growth is more rapid in summer than in winter. During summer in the Kuroshio,Oyashio transition region, on the other hand, feeding events were much more frequent than those in the East China Sea, in spite of a lower diving frequency. The mean horizontal distance traveled was also significantly higher and it seems that in this area they may move horizontally to feed on prey accumulated at the surface. We conclude that, in addition to the ambient temperature structure, the vertical and horizontal distribution of prey species plays an important role in the feeding behavior of Pacific bluefin tuna. One bluefin tuna migrated to the Oyashio frontal area, where both the horizontal and the vertical thermal gradients are much steeper. The fish spent most of the time on the warmer side of the front and often traveled horizontally to the colder side during the day, perhaps to feed. This implies that there is a thermal barrier effect, in this case from the Oyashio front, on their behavior. The frequency of feeding events was low, although all the monitored fish dived every dawn and dusk, irrespective of the seasons or location. It is possible that these twice-daily diving patterns occurred in response to the change in ambient light at sunrise and sunset. [source]


    Polymer Field-Effect Transistors Fabricated by the Sequential Gravure Printing of Polythiophene, Two Insulator Layers, and a Metal Ink Gate

    ADVANCED FUNCTIONAL MATERIALS, Issue 2 2010
    Monika M. Voigt
    Abstract The mass production technique of gravure contact printing is used to fabricate state-of-the art polymer field-effect transistors (FETs). Using plastic substrates with prepatterned indium tin oxide source and drain contacts as required for display applications, four different layers are sequentially gravure-printed: the semiconductor poly(3-hexylthiophene-2,5-diyl) (P3HT), two insulator layers, and an Ag gate. A crosslinkable insulator and an Ag ink are developed which are both printable and highly robust. Printing in ambient and using this bottom-contact/top-gate geometry, an on/off ratio of >104 and a mobility of 0.04,cm2 V,1 s,1 are achieved. This rivals the best top-gate polymer FETs fabricated with these materials. Printing using low concentration, low viscosity ink formulations, and different P3HT molecular weights is demonstrated. The printing speed of 40,m min,1 on a flexible polymer substrate demonstrates that very high-volume, reel-to-reel production of organic electronic devices is possible. [source]


    Warming and depth interact to affect carbon dioxide concentration in aquatic mesocosms

    FRESHWATER BIOLOGY, Issue 4 2008
    KYLA M. FLANAGAN
    Summary 1. Climate change may significantly influence lake carbon dynamics and consequently the exchange of CO2 with the atmosphere. Warming will accelerate multiple processes that either absorb or release CO2, making predicting the net effect of warming on CO2 exchange with the atmosphere difficult. Here we experimentally test how the CO2 flux of deep and shallow systems responds to warming. To do this, we conducted a greenhouse experiment using mesocosms of two depths, experiencing either ambient or warmed temperatures. 2. Deeper mesocosms were found to have a lower average CO2 concentration than shallower mesocosms under ambient temperature conditions. In addition, warming interacts with mesocosm depth to affect the average CO2 concentration; there was no effect of warming on the average CO2 concentration of deep mesocosms, but shallow mesocosms had significantly lower average CO2 concentrations when warmed. 3. The difference in CO2 concentration resulting from the depth manipulation was due to varying loss rates of particulate carbon to the sediments. There was a strong negative correlation between CO2 and sedimentation rates in the deep mesocosms suggesting that high particulate carbon loss to the sediments lowered the CO2 concentration in the water column. There was no correlation between CO2 and sedimentation rates observed for shallow mesocosms suggesting enhanced carbon regeneration from the sediments was maintaining higher CO2 concentrations in the water column. 4. Relationships between CO2 and algal concentrations indicate that the reduction in CO2 concentrations resulting from warming is due to increased per capita algal turnover rates depleting CO2 in the water column. Our results suggest that the carbon dynamics and CO2 flux of shallow systems will be affected more by climate warming than deep systems and the net effect of warming is to increase CO2 uptake. [source]


    Nutrient dependent effects of consumer identity and diversity on freshwater ecosystem function

    FRESHWATER BIOLOGY, Issue 1 2008
    ANDREW R. DZIALOWSKI
    Summary 1. Over the past decade, ecologists have tried to determine how changes in species composition and diversity affect ecosystem structure and function. Until recently, the majority of these studies have been conducted in terrestrial ecosystems and have not taken into account environmental variability. The purpose of this research was to determine how species identity and diversity in the freshwater zooplankton affected biomass of algae and zooplankton at two levels of nutrient enrichment. 2. Several species of cladocerans were grown alone and together in microcosms at both ambient and raised phosphorus concentrations to determine if the effects of consumer identity and diversity were nutrient dependent. 3. Total zooplankton biomass was greater, while algal biomass was lower, in mixed culture than in monoculture. The effects of zooplankton diversity on algal biomass, however, were only observed at raised phosphorus concentrations, suggesting that diversity effects were nutrient dependent. Specifically, diversity effects appeared to be related with biological mechanisms such as complementarity in resource use and/or facilitation. 4. More diverse communities of zooplankton appear to be better able to control algae than single species of zooplankton at high nutrient concentrations; therefore, zooplankton diversity may provide a buffer against eutrophication in freshwater ecosystems. [source]


    CO2 and nitrogen, but not population density, alter the size and C/N ratio of Phytolacca americana seeds

    FUNCTIONAL ECOLOGY, Issue 3 2005
    J.-S. HE
    Summary 1Plants can provision seeds by optimizing seed size, number and nutrient content to maximize parental fitness. According to the McGinley,Charnov hypothesis, seed size should be determined by the ratio of carbon to nitrogen (C/N) available to the plant, with larger seed size correlating with larger C/N ratios and smaller absolute N content. 2This hypothesis was tested by establishing monocultures of Phytolacca americana L. (Phytolaccaceae) at three population densities under ambient and elevated CO2 environments, with two availabilities of soil N. 3Elevated CO2 reduced both seed size and N concentration while increasing the C/N ratio; high soil N availability produced the opposite result for N concentration and C/N ratio. Higher planting densities reduced plant biomass, but did not alter seed size. 4In accordance with the McGinley,Charnov hypothesis, larger seeds had both larger C/N ratios and smaller N content. However, the increase in C/N ratio caused by elevated CO2 corresponded with smaller seeds overall: elevated CO2 reduced seed size, although the seed size,C/N relationship remained positive. 5These results suggest an alternative mechanism to explain variation in seed size, and suggest that future climate conditions may alter seed quality and plant reproductive behaviour. [source]


    Quantifying root lateral distribution and turnover using pine trees with a distinct stable carbon isotope signature

    FUNCTIONAL ECOLOGY, Issue 1 2005
    K. JOHNSEN
    Summary 1In order to help assess spatial competition for below-ground resources, we quantified the effects of fertilization on root biomass quantity and lateral root distribution of mid-rotation Pinus taeda trees. Open-top chambers exposed trees to ambient or ambient plus 200 µmol mol,1 atmospheric CO2 for 31 months. 2Tank CO2 was depleted in atmospheric 13C; foliage of elevated CO2 trees had ,13C of ,42·9, compared with ,29·1 for ambient CO2 trees. 3Roots 1 m from the base of elevated CO2 -grown trees had more negative ,13C relative to control trees, and this difference was detected, on average, up to 5·8, 3·7 and 3·7 m away from the trees for 0,2, 2,5 and >5 mm root-size classes, respectively. Non-fertilized tree roots extended as far as fertilized trees despite the fact that their above-ground biomass was less than half that of fertilized trees. 4These results are informative with respect to root sampling intensity and protocol, and the distances required between experimental manipulations to evaluate below-ground processes of independent treatments. 5Fine-root turnover has usually been estimated to range from weeks to 3 years, representing a major avenue of carbon flux. Using a mixing model we calculated that 0,2 mm roots had a mean residence time of 4·5 years indicating relatively slow fine-root turnover, a result that has major implications in modelling C cycling. [source]


    Respiration and thermogenesis by cones of the Australian cycad Macrozamia machinii

    FUNCTIONAL ECOLOGY, Issue 6 2004
    R. S. SEYMOUR
    Summary 1While cycads are often considered to be wind-pollinated, it is now clear that insects are pollen vectors in many species. This study addresses the role of thermogenesis in pollination biology of the dioecious cycad Macrozamia machinii P.I. Forster & D.L. Jones. 2The patterns of thermogenesis in intact male and female cones were assessed with thermometry and respirometry throughout the pollination period in the field. 3Thermogenic episodes in male cones occurred from about 17.00,00.00 h on successive evenings, in association with dehiscence of sporangia and presence of their pollinating weevils (Tranes sp.). 4Temperatures of the 167 g male cones rose ,6 °C above ambient, and mean rate of oxygen consumption peaked at 7·7 µmol s,1 (3·6 W). Regulation of male cone temperature was not evident, and thermogenesis of female cones was insignificant. 5Male cones probably heat to augment scent production and enhance weevil activity, including mating and egg-laying, but female cones may benefit from reduced visitation and freedom from damage by weevil larvae. Male cones may be sacrificial in providing the reward to the pollinators while the female cones are safeguarded. [source]


    Species-level effects more important than functional group-level responses to elevated CO2: evidence from simulated turves

    FUNCTIONAL ECOLOGY, Issue 3 2004
    M. E. HANLEY
    Summary 1Using mixtures of 14 calcareous grassland plant species drawn from three functional groups, we looked at the effects of elevated atmospheric CO2 on contrasting levels of ecosystem performance (species, functional group and community). Experimental communities were subjected to ambient (,350 µmol mol,1) or elevated CO2 (,600 µmol mol,1) in controlled environments, with grazing simulated by clipping at monthly intervals for 546 days. 2We assessed the effect of elevated CO2 on plant performance by quantifying the productivity (biomass) and cover of component species. We also examined the effect of elevated CO2 on the vertical structure of the plant canopy. Elevated CO2 resulted in a significant increase in total community biomass only following nutrient addition. Within functional groups, non-leguminous forb species had significantly greater biomass and cover in elevated CO2 both before and after nutrient addition, although the effect was mainly due to the influence of one species (Centaurea nigra). Grasses, in contrast, responded negatively to elevated CO2, although again significant reductions in biomass and cover could mainly be ascribed to a single species (Brachypodium pinnatum). Legumes exhibited increased biomass and cover in elevated CO2 (the effects being particularly marked for Anthyllis vulneraria and Lotus corniculatus), but this response disappeared following nutrient addition. Vertical structure was little affected by CO2 treatment. 3We conclude that due to the idiosyncratic responses of individual species, the categorization of plants into broad functional groups is of limited use in guiding our understanding of the impacts of elevated atmospheric CO2 on plant communities. [source]


    Tropospheric O3 moderates responses of temperate hardwood forests to elevated CO2: a synthesis of molecular to ecosystem results from the Aspen FACE project

    FUNCTIONAL ECOLOGY, Issue 3 2003
    D. F. Karnosky
    Summary 1The impacts of elevated atmospheric CO2 and/or O3 have been examined over 4 years using an open-air exposure system in an aggrading northern temperate forest containing two different functional groups (the indeterminate, pioneer, O3 -sensitive species Trembling Aspen, Populus tremuloides and Paper Birch, Betula papyrifera, and the determinate, late successional, O3 -tolerant species Sugar Maple, Acer saccharum). 2The responses to these interacting greenhouse gases have been remarkably consistent in pure Aspen stands and in mixed Aspen/Birch and Aspen/Maple stands, from leaf to ecosystem level, for O3 -tolerant as well as O3 -sensitive genotypes and across various trophic levels. These two gases act in opposing ways, and even at low concentrations (1·5 × ambient, with ambient averaging 34,36 nL L,1 during the summer daylight hours), O3 offsets or moderates the responses induced by elevated CO2. 3After 3 years of exposure to 560 µmol mol,1 CO2, the above-ground volume of Aspen stands was 40% above those grown at ambient CO2, and there was no indication of a diminishing growth trend. In contrast, O3 at 1·5 × ambient completely offset the growth enhancement by CO2, both for O3 -sensitive and O3 -tolerant clones. Implications of this finding for carbon sequestration, plantations to reduce excess CO2, and global models of forest productivity and climate change are presented. [source]


    Carbon dioxide assimilation by a wetland sedge canopy exposed to ambient and elevated CO2: measurements and model analysis

    FUNCTIONAL ECOLOGY, Issue 2 2003
    D. P. Rasse
    Summary 1The wetland sedge Scirpus olneyi Gray displays fast rates of CO2 assimilation and responds positively to increased atmospheric CO2 concentration. The present study was aimed at identifying the ecophysiological traits specific to S. olneyi that drive these CO2 -assimilation patterns under ambient and elevated CO2 conditions. 2The net ecosystem exchange (NEE) of CO2 between S. olneyi communities and the atmosphere was measured in open-top chambers. 3We developed a new mechanistic model for S. olneyi communities based on published ecophysiological data and additional measurements of photosynthetic parameters. 4Our NEE measurements confirmed that S. olneyi communities have a high rate of summertime CO2 assimilation, with noontime peaks reaching 40 µmol CO2 m,2 ground s,1 on productive summer days, and that elevated CO2 increased S. olneyi CO2 assimilation by c. 35,40%. 5Using S. olneyi -specific ecophysiological parameters, comparison with measured NEE showed that the model accurately simulated these high rates of CO2 uptake under ambient or elevated CO2. 6The model pointed to the Rubisco capacity of Scirpus leaves associated with their high total nitrogen content as the primary explanation for the high rates of CO2 assimilation, and indicated that the vertical-leaf canopy structure of S. olneyi had comparatively little influence on CO2 assimilation. [source]


    Respiratory carbon loss of calcareous grasslands in winter shows no effects of 4 years' CO2 enrichment

    FUNCTIONAL ECOLOGY, Issue 2 2002
    M. Volk
    Summary 1CO2 exchange measurements in long-term CO2 -enrichment experiments suggest large net carbon gains by ecosystems during the growing season that are not accounted for by above-ground plant biomass. Considerable amounts of C might therefore be allocated below ground. 2Winter ecosystem respiration from temperate grasslands under elevated CO2 may account for the loss of a significant part of the extra C gained during the growing season. To test this hypothesis, dark respiration was assessed throughout the winter of the fourth year of CO2 enrichment in a calcareous grassland. 3Using these data, a model was parameterized to estimate whole-winter respiratory CO2 losses. From November to February, 154 9 g C m,2 were respired under elevated CO2 and 144 5 g C m,2 under ambient [CO2], with no significant difference between the CO2 treatments. 4We conclude that (i) wintertime respiration does not constitute a larger C loss from the ecosystem at elevated CO2; and (ii) the absence of respiratory responses implies no extra growing-season C inputs with month-to-year turnover times at elevated CO2. [source]


    Leaf dark respiration as a function of canopy position in Nothofagus fusca trees grown at ambient and elevated CO2 partial pressures for 5 years

    FUNCTIONAL ECOLOGY, Issue 4 2001
    K. L. Griffin
    Summary 1,Mass-based and area-based rates of respiration, leaf nitrogen content, leaf total protein content, non-structural carbohydrates and leaf mass per unit area (LMA) all decreased with depth in the canopy of Nothofagus fusca (Hook. F.) Oerst. (Red beech) trees grown for 5 years at ambient (36 Pa) or elevated (66 Pa) CO2 partial pressures. 2Elevated CO2 partial pressure had a strong effect on dark respiration, decreasing both mass-based and area-based rates at all canopy positions, but had little or no effect on leaf physical and biochemical properties. 3Leaf sugars, starch, protein, N and LMA were all correlated with respiration rate, and are therefore strong predictors of area-based dark respiration rates. The y axis intercept of regressions of respiration rate on mean leaf N, protein, starch and LMA was lower for plants grown at elevated compared to ambient CO2 partial pressures because of the differential effect of growth at elevated CO2 partial pressure on leaf gas-exchange, chemical and physical characteristics. 4,The lower respiration rates for leaves from trees grown at elevated CO2 partial pressure resulted in a significant increase in the ratio of light-saturated net photosynthesis to respiration, increasing the potential carbon-use efficiency of these leaves. [source]


    Direct Conversion of Single-Layer SnO Nanoplates to Multi-Layer SnO2 Nanoplates with Enhanced Ethanol Sensing Properties

    ADVANCED FUNCTIONAL MATERIALS, Issue 15 2009
    Kun-Mu Li
    Abstract Direct conversion of single-layer SnO nanoplates to multi-layer SnO2 nanoplates is achieved by annealing in an O2 ambient at 700,°C. For 50,ppm ethanol, the sensitivities of the multi-layer SnO2 nanoplates are more than double that of single-layer SnO2 nanoplates, which are also formed from the single-layer SnO. The higher sensitivity of the multi-layer nanoplates is attributed to their larger surface/volume ratio. The facile fabrication of interconnected multi-layer SnO2 nanoplates at low temperature directly on a Si substrate and sensing chip without the aid of catalysts offers vast advantages over competing methods for the fabrication of high-sensitivity SnO2 sensors. [source]


    The effects of elevated CO2 on root respiration rates of two Mojave Desert shrubs

    GLOBAL CHANGE BIOLOGY, Issue 5 2010
    NAOMI M. CLARK
    Abstract Although desert ecosystems are predicted to be the most responsive to elevated CO2, low nutrient availability may limit increases in productivity and cause plants in deserts to allocate more resources to root biomass or activity for increased nutrient acquisition. We measured root respiration of two Mojave Desert shrubs, Ambrosia dumosa and Larrea tridentata, grown under ambient (,375 ppm) and elevated (,517 ppm) CO2 concentrations at the Nevada Desert FACE Facility (NDFF) over five growing seasons. In addition, we grew L. tridentata seedlings in a greenhouse with similar CO2 treatments to determine responses of primary and lateral roots to an increase in CO2. In both field and greenhouse studies, root respiration was not significantly affected by elevated CO2. However, respiration of A. dumosa roots <1 month old was significantly greater than respiration of A. dumosa roots between 1 and 4 months old. For both shrub species, respiration rates of very fine (<1.0 mm diameter) roots were significantly greater than those of fine (1,2 mm diameter) roots, and root respiration decreased as soil water decreased. Because specific root length was not significantly affected by CO2 and because field minirhizotron measurements of root production were not significantly different, we infer that root growth at the NDFF has not increased with elevated CO2. Furthermore, other studies at the NDFF have shown increased nutrient availability under elevated CO2, which reduces the need for roots to increase scavenging for nutrients. Thus, we conclude that A. dumosa and L. tridentata root systems have not increased in size or activity, and increased shoot production observed under elevated CO2 for these species does not appear to be constrained by the plant's root growth or activity. [source]


    Increased temperature and precipitation interact to affect root production, mortality, and turnover in a temperate steppe: implications for ecosystem C cycling

    GLOBAL CHANGE BIOLOGY, Issue 4 2010
    WENMING BAI
    Abstract Fine root production and turnover play important roles in regulating carbon (C) cycling in terrestrial ecosystems. In order to examine effects of climate change on root production and turnover, a field experiment with increased temperature and precipitation had been conducted in a semiarid temperate steppe in northern China since April 2005. Experimental warming decreased annual root production, mortality, and mean standing crop by 10.3%, 12.1%, 7.0%, respectively, while root turnover was not affected in 2006 and 2007 by the warming. Annual root production and turnover was 5.9% and 10.3% greater in the elevated than ambient precipitation plots. Changes in root production and mortality in response to increased temperature and precipitation could be largely attributed to the changes in gross ecosystem productivity (GEP) and belowground/aboveground C allocation. There were significant interactive effects of warming and increased precipitation on root productivity, mortality, and standing crop. Experimental warming had positive and negative effects on the three root variables (root production, mortality, standing crop) under ambient and increased precipitation, respectively. Increased precipitation stimulated and suppressed the three root variables in the unwarmed and warmed subplots, respectively. The positive dependence of soil respiration and ecosystem respiration upon root productivity and mortality highlights the important role of root dynamics in ecosystem C cycling. The nonadditive effects of increased temperature and precipitation on root productivity, mortality, and standing crop observed in this study are critical for model projections of climate,ecosystem feedbacks. These findings indicate that carbon allocation is a focal point for future research and that results from single factor experiments should be treated with caution because of factor interactions. [source]


    Greater seed production in elevated CO2 is not accompanied by reduced seed quality in Pinus taeda L.

    GLOBAL CHANGE BIOLOGY, Issue 3 2010
    DANIELLE A. WAY
    Abstract For herbaceous species, elevated CO2 often increases seed production but usually leads to decreased seed quality. However, the effects of increased atmospheric CO2 on tree fecundity remain uncertain, despite the importance of reproduction to the composition of future forests. We determined how seed quantity and quality differed for pine trees grown for 12 years in ambient and elevated (ambient+200 ,L L,1) CO2, at the Duke Forest free-air CO2 enrichment (FACE) site. We also compared annual reproductive effort with yearly measurements of aboveground net primary productivity (ANPP), precipitation (P), potential evapotranspiration (PET) and water availability [precipitation minus potential evapotranspiration (P,PET)] to investigate factors that may drive interannual variation in seed production. The number of mature, viable seeds doubled per unit basal area in high-CO2 plots from 1997 to 2008 (P<0.001), but there was no CO2 effect on mean seed mass, viability, or nutrient content. Interannual variation in seed production was positively related to ANPP, with a similar percentage of ANPP diverted to reproduction across years. Seed production was negatively related to PET (P<0.005) and positively correlated with water availability (P<0.05), but showed no relationship with precipitation (P=0.88). This study adds to the few findings that, unlike herbaceous crops, woody plants may benefit from future atmospheric CO2 by producing larger numbers of seeds without suffering degraded seed quality. Differential reproductive responses between functional groups and species could facilitate woody invasions or lead to changes in forest community composition as CO2 rises. [source]


    Indirect effects of soil moisture reverse soil C sequestration responses of a spring wheat agroecosystem to elevated CO2

    GLOBAL CHANGE BIOLOGY, Issue 1 2010
    SVEN MARHAN
    Abstract Increased plant productivity under elevated atmospheric CO2 concentrations might increase soil carbon (C) inputs and storage, which would constitute an important negative feedback on the ongoing atmospheric CO2 rise. However, elevated CO2 often also leads to increased soil moisture, which could accelerate the decomposition of soil organic matter, thus counteracting the positive effects via C cycling. We investigated soil C sequestration responses to 5 years of elevated CO2 treatment in a temperate spring wheat agroecosystem. The application of 13C-depleted CO2 to the elevated CO2 plots enabled us to partition soil C into recently fixed C (Cnew) and pre-experimental C (Cold) by 13C/12C mass balance. Gross C inputs to soils associated with Cnew accumulation and the decomposition of Cold were then simulated using the Rothamsted C model ,RothC.' We also ran simulations with a modified RothC version that was driven directly by measured soil moisture and temperature data instead of the original water balance equation that required potential evaporation and precipitation as input. The model accurately reproduced the measured Cnew in bulk soil and microbial biomass C. Assuming equal soil moisture in both ambient and elevated CO2, simulation results indicated that elevated CO2 soils accumulated an extra ,40,50 g C m,2 relative to ambient CO2 soils over the 5 year treatment period. However, when accounting for the increased soil moisture under elevated CO2 that we observed, a faster decomposition of Cold resulted; this extra C loss under elevated CO2 resulted in a negative net effect on total soil C of ,30 g C m,2 relative to ambient conditions. The present study therefore demonstrates that positive effects of elevated CO2 on soil C due to extra soil C inputs can be more than compensated by negative effects of elevated CO2 via the hydrological cycle. [source]


    Chronic exposure to increasing background ozone impairs stomatal functioning in grassland species

    GLOBAL CHANGE BIOLOGY, Issue 6 2009
    GINA MILLS
    Abstract Two species found in temperate calcareous and mesotrophic grasslands (Dactylis glomerata and Leontodon hispidus) were exposed to eight ozone treatments spanning preindustrial to post-2100 regimes, and late-season effects on stomatal functioning were investigated. The plants were grown as a mixed community in 14 L containers and were exposed to ozone in ventilated solardomes (dome-shaped greenhouses) for 20 weeks from early May to late September 2007. Ozone exposures were based on O3 concentrations from a nearby upland area, and provided the following seasonal 24 h means: 21.4, 39.9 (simulated ambient), 50.2, 59.4, 74.9, 83.3, 101.3 and 102.5 ppb. In both species, stomatal conductance of undamaged inner canopy leaves developing since a midseason cutback increased linearly with increasing background ozone concentration. Imposition of severe water stress by leaf excision indicated that increasing background ozone concentration decreased the ability of leaves to limit water loss, implying impaired stomatal control. The threshold ozone concentrations for these effects were 15,40 ppb above current ambient in upland UK, and were within the range of ozone concentrations anticipated for much of Europe by the latter part of this century. The potential mechanism behind the impaired stomatal functioning was investigated using a transpiration assay. Unlike for lower ozone treatments, apparently healthy green leaves of L. hispidus that had developed in the 101.3 ppb treatment did not close their stomata in response to 1.5 ,m abscisic acid (ABA); indeed stomatal opening initially occurred in this treatment. Thus, ozone appears to be disrupting the ABA-induced signal transduction pathway for stomatal control thereby reducing the ability of plants to respond to drought. These results have potentially wide-reaching implications for the functioning of communities under global warming where periods of soil drying and episodes of high vapour pressure deficit are likely to be more severe. [source]