Home About us Contact | |||
Harvest Regulations (harvest + regulation)
Selected AbstractsEnhancing catch-and-release science with biotelemetryFISH AND FISHERIES, Issue 1 2008Michael R. Donaldson Abstract Catch-and-release (C&R) angling is widely practised by anglers and is a common fisheries management strategy or is a by-product of harvest regulations. Accordingly, there is a growing body of research that examines not only the mortality associated with C&R, but also the sublethal physiological and behavioural consequences. Biotelemetry offers a powerful means of remotely monitoring the behaviour, physiology and mortality of fish caught and released in their natural environment, but we contend that its usefulness is still underappreciated by scholars and managers. In this study, we review the applications of biotelemetry in C&R science, identify novel research directions, opportunities and challenges. There are now about 250 C&R studies but only one quarter of these utilize biotelemetry. In fact, almost all of the C&R studies that have used biotelemetry have been conducted within the last decade. We found that the majority of C&R telemetry studies used either radio or acoustic telemetry, while comparatively few studies have used satellite technologies. Most C&R biotelemetry studies have been used to assess mortality rates, behavioural impairments or to evaluate the effects of displacement on fish. A small fraction of studies (<8%) have used physiological sensors despite the fact that these tools are highly applicable to understanding the multiple sublethal consequences of C&R and are useful for providing mechanistic insights into endpoints such as death. We conclude that C&R science has the potential to benefit greatly from biotelemetry technology, particularly with respect to providing more robust short-term and delayed mortality estimates and adopting a more integrative and comparative approach to understanding the lethal and sublethal impacts of C&R. However, there are still a number of challenges including (i) the need for appropriate controls and methodological approaches, (ii) the need for accounting for tagging and handling stress and mortality, and (iii) the need for certainty in assessing mortality. However, the benefits associated with C&R biotelemetry outweigh its disadvantages and limitations and thereby offer C&R researchers a suite of new tools to enhance fisheries management and conservation. [source] How to link biomanipulation and sustainable fisheries management: a step-by-step guideline for lakes of the European temperate zoneFISHERIES MANAGEMENT & ECOLOGY, Issue 3-4 2004T. Mehner Abstract Biomanipulation, the reduction of planktivorous fish to enhance filter-feeding zooplankton, has been used to rehabilitate eutrophied lakes. However, efficacy and long-term success were dependent on nutrient load, lake morphometry and biomanipulation measures. The ongoing focus on sustainable use of aquatic resources offers the chance to perform lake rehabilitation using a combined strategy of nutrient load reduction and traditional inland fisheries management techniques. Particularly in Central and Western Europe where piscivorous fish are the target species of most commercial and recreational fisheries, an enhancement of the piscivores by stocking and harvest regulations may act successfully in the co-management of ecosystem and fisheries. Guidelines are presented on how biomanipulation can be used as in lake rehabilitation by considering the objectives and constraints of traditional fisheries management. Alternatives in the decision tree are elucidated by examples from biomanipulations and lake management programmes in the temperate zone of Europe and North America. It is suggested that biomanipulation may support many lake rehabilitation programmes where fisheries' stakeholders are the principal user groups. [source] Stocking piscivores to improve fishing and water clarity: a synthesis of the Lake Mendota biomanipulation projectFRESHWATER BIOLOGY, Issue 12 2002R. C. Lathrop SUMMARYY 1.,A total of 2.7 × 106 walleye fingerlings and 1.7 × 105 northern pike fingerlings were stocked during 1987,99 in eutrophic Lake Mendota. The objectives of the biomanipulation were to improve sport fishing and to increase piscivory to levels that would reduce planktivore biomass, increase Daphnia grazing and ultimately reduce algal densities in the lake. The combined biomass of the two piscivore species in the lake increased rapidly from < 1 kg ha,1 and stabilised at 4,6 kg ha,1 throughout the evaluation period. 2.,Restrictive harvest regulations (i.e. increase in minimum size limit and reduction in bag limit) were implemented in 1988 to protect the stocked piscivores. Further restrictions were added in 1991 and 1996 for walleye and northern pike, respectively. These restrictions were essential because fishing pressure on both species (especially walleye) increased dramatically during biomanipulation. 3.,Commencing in 1987 with a massive natural die-off of cisco and declining yellow perch populations, total planktivore biomass dropped from about 300,600 kg ha,1 prior to the die-off and the fish stocking, to about 20,40 kg ha,1 in subsequent years. These low planktivore biomasses lasted until a resurgence in the perch population in 1999. 4.,During the period prior to biomanipulation when cisco were very abundant, the dominant Daphnia species was the smaller-bodied D. galeata mendotae, which usually reached a biomass maximum in June and then crashed shortly thereafter. Beginning in 1988, the larger-bodied D. pulicaria dominated, with relatively high biomasses occurring earlier in the spring and lasting well past mid-summer of many years. 5.,In many years dominated by D. pulicaria, Secchi disc readings were greater during the spring and summer months when compared with years dominated by D. galeata mendotae. During the biomanipulation evaluation period, phosphorus (P) levels also changed dramatically thus complicating our analysis. Earlier research on Lake Mendota had shown that Daphnia grazing increased summer Secchi disc readings, but P concentrations linked to agricultural and urban runoff and to climate-controlled internal mixing processes were also important factors affecting summer readings. 6.,The Lake Mendota biomanipulation project has been a success given that high densities of the large-bodied D. pulicaria have continued to dominate for over a decade, and the diversity of fishing opportunities have improved for walleye, northern pike and, more recently, yellow perch. 7.,Massive stocking coupled with very restrictive fishing regulations produced moderate increases in piscivore densities. Larger increases could be realised by more drastic restrictions on sport fishing, but these regulations would be very controversial to anglers. 8.,If the lake's food web remains in a favourable biomanipulation state (i.e. high herbivory), further improvements in water clarity are possible with future reductions in P loadings from a recently initiated non-point pollution abatement programme in the lake's drainage basin. [source] Comparison of losses of planktivorous fish by predation and seine-fishing in a lake undergoing long-term biomanipulationFRESHWATER BIOLOGY, Issue 12 2002Klaus Wysujack SUMMARY 1.,Piscivore stocking at artificially high densities and fishing are the two common approaches to reduce the amount of planktivorous and benthivorous fish in lake biomanipulation programmes. Both measures have advantages and disadvantages, but their relative efficacy has not previously been directly compared. 2.,We calculated the average annual catch of roach and bream in a lake undergoing long-term biomanipulation (Feldberger Haussee, Germany) by seining each year between 1992 and 1998. We compared this value with a bioenergetics estimate of annual consumption rates of the dominant cohorts of piscivores, pikeperch and pike, in 1997 and 1998. We also determined species composition and length distribution of prey fish in stomachs of the piscivores. 3.,Roach was the dominant prey species of both pikeperch and pike, whereas bream was rarely taken by either piscivorous species. Seining removed on average larger specimens of roach than were found in the stomachs of the piscivores. 4.,Based on stocking densities of the piscivores, published mortality rates, and individual consumption rates, feeding of pikeperch and pike on roach exceeded the manual removal of roach by seining by a factor of 4,15 (biomass) in 1997 and 1998. 5.,Based on these results, a combination of fishing and piscivore enhancement is recommended. Whereas the stocks of adult roach and bream have to be reduced mainly by fishing, the predation of piscivores should be directed predominantly towards the juvenile zooplanktivorous fish. Therefore, small size-classes of piscivorous fish should be promoted by fisheries management, including stocking and harvest regulations. [source] |