Haptic Device (haptic + device)

Distribution by Scientific Domains


Selected Abstracts


Recent Developments and Applications of Haptic Devices

COMPUTER GRAPHICS FORUM, Issue 2 2003
S. D. Laycock
Abstract Over recent years a variety of haptic feedback devices have been developed and are being used in a number of important applications. They range from joysticks used in the entertainment industry to specialised devices used in medical applications. This paper will describe the recent developments of these devices and show how they have been applied. It also examines how haptic feedback has been combined with visual display devices, such as virtual reality walls and workbenches, in order to improve the immersive experience. ACM CSS: H.5.2 Information Interfaces and Presentation,Haptic I/O; I.3.8 Computer Graphics,Applications; I.6 Simulation and Modelling,Applications [source]


Design and control of a planar haptic device with passive actuators based on passive force manipulability ellipsoid (FME) analysis

JOURNAL OF FIELD ROBOTICS (FORMERLY JOURNAL OF ROBOTIC SYSTEMS), Issue 9 2005
Changhyun Cho
In this paper, we propose an optimal design for a passive haptic device with brakes and its control method. The inability of a brake to generate torque significantly affects the performance of a multi-DOF haptic device, in that a desired force can be generated only approximately in some workspace and, in some cases, the device may become stuck contrary to the user's intention. In this research, these limitations are analyzed by means of the so-called passive force manipulability ellipsoid. Through the analysis, performance indices are developed for evaluating the limitations associated with passive haptic devices. Optimization is conducted for a 5-bar mechanism with redundant actuation, and a coercive force approximation scheme is developed to avoid unsmooth motion during the wall-following task along the virtual wall. It is experimentally shown that the performance in relation to the limitations is greatly improved for the optimized mechanism. © 2005 Wiley Periodicals, Inc. [source]


CAD/CAM fabrication and clinical application of surgical template and bone model in oral implant surgery

CLINICAL ORAL IMPLANTS RESEARCH, Issue 1 2009
Taiji Sohmura
Abstract Objectives: A novel implant surgery support system with computer simulation for implant insertion and fabrication of a surgical template that helps in drilling bone was developed. A virtual reality haptic device that gives the sense of touch was used for simulation and a surgical template was fabricated by CAD/CAM method. Surgical guides were applied for two clinical cases. Material and methods: Three-dimensional (3D) jaw bone images transferred from DICOM data filmed by CT scanner were fed to the software and manipulated using the haptic device. The site for implant insertion was determined after evaluating the quality of bone and position of the mandibular canal. The surgical template was designed with ease using the free design CAD function of haptic device. The surgical template and bone model were fabricated by a fused deposit modeling machine. Two clinical cases were applied using the present system. Results: Simulation to determine the site of implant insertion and fabrication of the surgical bone templates were successfully done in two clinical cases, one for three implant insertion in lower right jaw and the other is for seven implant insertion in lower edentulous jaw, respectively. During surgery, the templates could be firmly adapted on the bone and drilling was successfully performed in both cases. Conclusion: The present simulation and drilling support using the surgical template may help to perform safe and accurate implant surgery. [source]


Design and control of a planar haptic device with passive actuators based on passive force manipulability ellipsoid (FME) analysis

JOURNAL OF FIELD ROBOTICS (FORMERLY JOURNAL OF ROBOTIC SYSTEMS), Issue 9 2005
Changhyun Cho
In this paper, we propose an optimal design for a passive haptic device with brakes and its control method. The inability of a brake to generate torque significantly affects the performance of a multi-DOF haptic device, in that a desired force can be generated only approximately in some workspace and, in some cases, the device may become stuck contrary to the user's intention. In this research, these limitations are analyzed by means of the so-called passive force manipulability ellipsoid. Through the analysis, performance indices are developed for evaluating the limitations associated with passive haptic devices. Optimization is conducted for a 5-bar mechanism with redundant actuation, and a coercive force approximation scheme is developed to avoid unsmooth motion during the wall-following task along the virtual wall. It is experimentally shown that the performance in relation to the limitations is greatly improved for the optimized mechanism. © 2005 Wiley Periodicals, Inc. [source]


Graphic and haptic modelling of the oesophagus for VR-based medical simulation

THE INTERNATIONAL JOURNAL OF MEDICAL ROBOTICS AND COMPUTER ASSISTED SURGERY, Issue 3 2009
Changmok Choi
Abstract Background Medical simulators with vision and haptic feedback have been applied to many medical procedures in recent years, due to their safe and repetitive nature for training. Among the many technical components of the simulators, realistic and interactive organ modelling stands out as a key issue for judging the fidelity of the simulation. This paper describes the modelling of an oesophagus for a real-time laparoscopic surgical simulator. Methods For realistic simulation, organ deformation and tissue cutting in the oesophagus are implemented with geometric organ models segmented from the Visible Human Dataset. The tissue mechanical parameters were obtained from in vivo animal experiments and integrated with graphic and haptic devices into the laparoscopic surgical simulation system inside an abdominal mannequin. Results This platform can be used to demonstrate deformation and incision of the oesophagus by surgical instruments, where the user can haptically interact with the virtual soft tissues and simultaneously see the corresponding organ deformation on the visual display. Conclusions Current laparoscopic surgical training has been transformed from the traditional apprenticeship model to simulation-based methods. The outcome of the model could replace conventional training systems and could be useful in effectively transferring surgical skills to novice surgeons. Copyright © 2009 John Wiley & Sons, Ltd. [source]