HaCaT Keratinocytes (hacat + keratinocyte)

Distribution by Scientific Domains


Selected Abstracts


Two modes of ERK activation by TNF in keratinocytes: Different cellular outcomes and bi-directional modulation by vitamin D,

JOURNAL OF CELLULAR BIOCHEMISTRY, Issue 2 2008
Ester Ziv
Abstract Inflammation, elicited in the skin following tissue damage or pathogen invasion, may become chronic with deleterious consequences. Tumor necrosis factor (TNF) is a key mediator of cutaneous inflammation and the keratinocyte an important protagonist of skin immunity. Calcitriol, the hormonally active vitamin D metabolite, and its analogs attenuate epidermal inflammation and inhibit the hyperproliferation of keratinocytes associated with the inflammatory disorder, psoriasis. Since activation of extracellular signal-regulated kinase (ERK) promotes keratinocyte proliferation and mediates epidermal inflammation, we studied the effect of calcitriol on ERK activation in HaCaT keratinocytes exposed to the ubiquitous inflammatory cytokine TNF. By using the EGF receptor (EGFR) tyrosine kinase inhibitor, AG1487 and the Src family inhibitor, PP-1, we established that TNF activated ERK in an EGFR and Src dependent and an EGFR and Src independent modes. EGFR dependent activation resulted in the upregulation of the transcription factor, c-Fos, while the EGFR independent activation mode was of a shorter duration, did not affect c-Fos expression but induced IL-8 mRNA expression. Pretreatment with calcitriol, enhanced TNF-induced EGFR-Src dependent ERK activation and tyrosine phosphorylation of the EGFR, but abolished the EGFR-Src independent ERK activation. These effects were mirrored by enhancement of c-Fos and inhibition of IL-8 induction by TNF. Treatment with calcitriol increased the rate of the de-phosphorylation of activated ERK, accounting for the inhibition of EGFR-Src independent ERK activation by TNF. It is possible that effects on the ERK cascade contribute to the effects of calcitriol and its synthetic analogs on cutaneous inflammation and keratinocyte proliferation. J. Cell. Biochem. 104: 606,619, 2008. © 2007 Wiley-Liss, Inc. [source]


Agonist-induced calcium entry correlates with STIM1 translocation

JOURNAL OF CELLULAR PHYSIOLOGY, Issue 3 2007
Kehinde Ross
The mechanisms of agonist-induced calcium entry (ACE) following depletion of intracellular calcium stores have not been fully established. We report here that calcium-independent phospholipase A (iPLA2) is required for robust Ca2+ entry in HaCaT keratinocytes following ATP or UTP stimulation. Lysophosphatidic acid (LPA), an unrelated agonist, evoked Ca2+ release without inducing robust Ca2+ entry. Both LPA and UTP induced the redistribution of STIM1 into puncta which localized to regions near or at the plasma membrane, as well as within the cytoplasm. Plasma membrane-associated STIM1 remained high for up to 10 min after UTP stimulation, whereas it had returned almost to baseline by that time point in LPA-stimulated cells. This correlated with faster reloading of the endoplasmic reticulum Ca2+ stores in LPA treated cells. Thus by differentially regulating store-refilling after agonist-mediated depletion, LPA and UTP may exert distinct effects on the duration of STIM1 localization at the plasma membrane, and thus, on the magnitude and duration of ACE. J. Cell. Physiol. 211: 569,576, 2007. © 2007 Wiley-Liss, Inc. [source]


Electrospun, Biofunctionalized Fibers as Tailored in vitro Substrates for Keratinocyte Cell Culture

MACROMOLECULAR BIOSCIENCE, Issue 9 2010
Dirk Grafahrend
Abstract Cell adhesion preventing fiber surfaces were tailored differently with bioactive peptides (a fibronectin fragment (GRGDS), a collagen IV fragment (GEFYFDLRLKGDK) and a combination of both) to provide an artificial extracellular matrix as a substrate for HaCaT keratinocyte cell culture. Therefore, a polymer blend containing a six-arm star-shaped statistical copolymer of ethylene oxide and propylene oxide in the ratio 80:20 (NCO- sP[EO- co -PO]) and poly-[D,L -(lactide- co -glycolide)] (PLGA) was electrospun. The resulting fibers were biofunctionalized and investigated as in vitro substrates using the HaCaT kerationcyte cell line. Appropriate surface chemistry on these electrospun fibers proved to prevent adhesion of keratinocytes, while additional immobilization of certain peptide sequences induced cell adhesion. These specific fibers enable investigation of immobilized active molecules and the subsequent cellular response to the scaffold. HaCaT keratinocytes were found to selectively adhere to those fibers modified with either collagen IV segment GEFYFDLRLKGDK or a mixture of the two peptide sequences GEFYFDLRLKGDK and GRGDS (1:1). However, the synergistic effects of both (the fibronectin fragment and the collagen IV fragment) seem to significantly increase the numbers of adherent keratinocytes. [source]


Requirement for Metalloproteinase-dependent ERK and AKT Activation in UVB-induced G1-S Cell Cycle Progression of Human Keratinocytes

PHOTOCHEMISTRY & PHOTOBIOLOGY, Issue 4 2009
Weinong Han
UVB (280,315 nm) in natural sunlight represents a major environmental challenge to the skin and is clearly associated with human skin cancer. Here we demonstrate that low doses of UVB induce keratinocyte proliferation and cell cycle progression of human HaCaT keratinocytes. Different from UVA, UVB irradiation induced extracellular signal-regulated kinase (ERK) and AKT activation and their activation are both required for UVB-induced cell cycle progression. Activation of epidermal growth factor receptor (EGFR) was observed after UVB exposure and is upstream of ERK/AKT/cyclin D1 pathway activation and cell cycle progression following UVB radiation. Furthermore, metalloproteinase (MP) inhibitor GM6001 blocked UVB-induced ERK and AKT activation, cell cycle progression, and decreased the EGFR phosphorylation, demonstrating that MPs mediate the EGFR/ERK/AKT/cyclin D1 pathways and cell cycle progression induced by UVB radiation. In addition, ERK or AKT activation is essential for EGFR activation because ERK or AKT inhibitor blocks EGFR activation following UVB radiation, indicating that EGFR/AKT/ERK pathways form a regulatory loop and converge into cell cycle progression following UVB radiation. Identification of these signaling pathways in UVB-induced cell cycle progression of quiescent keratinocytes as a process mimicking tumor promotion in vivo will facilitate the development of efficient and safe chemopreventive and therapeutic strategies for skin cancer. [source]


Spatial Distribution of Protein Damage by Singlet Oxygen in Keratinocytes

PHOTOCHEMISTRY & PHOTOBIOLOGY, Issue 1 2008
Yu-Ying He
Singlet oxygen may be generated in cells by either endogenous or exogenous photosensitizers as a result of exposure to UV or visible irradiation. We have used immuno-spin trapping (Free Radic. Biol. Med. 36: 1214, 2004) to identify the subcellular targets of singlet oxygen generated by rose bengal (RB). Confocal fluorescence microscopy of HaCaT keratinocytes incubated with RB clearly showed that the dye entered the cells and was located mainly in the perinuclear region, probably associated with the Golgi apparatus and endoplasmic reticulum. Previous studies by Wright et al. (Free Radic. Biol. Med.34: 637, 2003) have shown that long-lived protein hydroperoxides (POOH) are present in cells exposed to singlet oxygen-generating dyes. The addition of reducing metal ions such as Cu+ to POOH results in the generation of protein-derived radicals, POO, and PO,, which react with the spin trap 5,5-dimethyl-1-pyrroline N -oxide (DMPO) to give relatively stable spin adducts. In order to determine the subcellular localization of the protein-DMPO adducts, we exposed keratinocytes to RB/light exposure and then incubated the cells with Cu+ and DMPO. After staining with antibody against DMPO followed by a secondary Alexa Fluor 488 goat anti-rabbit IgG, the intracellular distribution of protein-DMPO adducts was determined by confocal microscopy. The subcellular localization of the protein DMPO adducts was coincident with that of RB. This approach may provide information on the spatial distribution of singlet oxygen generated in cells. [source]


Inhibition of UVB-mediated Oxidative Stress and Markers of Photoaging in Immortalized HaCaT Keratinocytes by Pomegranate Polyphenol Extract POMx

PHOTOCHEMISTRY & PHOTOBIOLOGY, Issue 4 2007
Mohammad Abu Zaid
In recent years there has been an increase in use of botanicals with antioxidant properties as skin photoprotective agents. Pomegranate (Punica granatum L.) fruit possesses strong antioxidant and antiinflammatory properties. Recently, we have shown that pomegranate-derived products rich in anthocyanidins and ellagitannins inhibit UVB-mediated activation of nuclear factor kappa B and modulate UVA-mediated cell proliferation pathways in normal human epidermal keratinocytes. In this study, we evaluated the effect of polyphenol-rich pomegranate fruit extract (POMx) on UVB-induced oxidative stress and photoaging in human immortalized HaCaT keratinocytes. Our data show that pretreatment of HaCaT cells with POMx (10,40 ,g mL,1) inhibited UVB (15,30 mJ cm,2)-mediated (1) decrease in cell viability, (2) decrease in intracellular glutathione content and (3) increase in lipid peroxidation. Employing immunoblot analysis we found that pretreatment of HaCaT cells with POMx inhibited UVB-induced (1) upregulation of MMP-1, -2, -7 and -9, (2) decrease in TIMP-1, (3) phosphorylation of MAPKs and (iv) phosphorylation of c-jun, whereas no effect was observed on UVB-induced c-fos protein levels. These results suggest that POMx protects HaCaT cells against UVB-induced oxidative stress and markers of photoaging and could be a useful supplement in skin care products. [source]


Protective Effect of Sanguinarine on Ultraviolet B-mediated Damages in SKH-1 Hairless Mouse Skin: Implications for Prevention of Skin Cancer

PHOTOCHEMISTRY & PHOTOBIOLOGY, Issue 4 2007
Haseeb Ahsan
Excessive exposure of solar ultraviolet (UV) radiation, particularly its UVB component (280,320 nm), to human skin is the major cause of skin cancers. UV exposure also leads to the development of precancerous conditions such as actinic keratosis and elicits a variety of other adverse effects such as sunburn, inflammation, hyperplasia, immunosuppression and skin aging. Therefore, there is a need to intensify our efforts towards the development of novel mechanism-based approaches/agents for the protection of UVB-mediated damages. Chemoprevention is being investigated as a potential approach for the management of UV damages including skin cancer. We have earlier shown that sanguinarine, a benzophenanthridine alkaloid, inhibits UVB exposure-mediated damages in HaCaT keratinocytes. In this study, to determine the relevance of our in vitro findings to in vivo situations, we assessed the effects of sanguinarine on UVB-mediated damages in SKH-1 hairless mice. Our data demonstrated that a topical application of sanguinarine (5 ,mol 0.3 mL,1 ethanol per mouse), either as a pretreatment (30 min prior to UVB) or posttreatment (5 min after UVB), resulted in a significant decrease in UVB-mediated increases in skin edema, skin hyperplasia and infiltration of leukocytes. Further, sanguinarine treatments (pre and post) also resulted in a significant decrease in UVB mediated (1) generation of H2O2 and (2) increases in the protein levels of markers of tumor promotion/proliferation viz. ornithine decarboxylase (ODC), proliferating cell nuclear antigen (PCNA) and Kiel antigen-67. Based on this data, we suggest that sanguinarine could be developed as an agent for the management of conditions elicited by UV exposure including skin cancer. However, further detailed studies are needed to support this suggestion. [source]


UV Erythema Reducing Capacity of Mizolastine Compared to Acetyl-salicylic Acid or both Combined in Comparison to Indomethacin,,

PHOTOCHEMISTRY & PHOTOBIOLOGY, Issue 4 2001
Jens-Uwe Grundmann
ABSTRACT UV light exerts hazardous effects such as induction of skin cancer and premature skin aging. In this study we evaluated an assumptive anti-inflammatory effect of the nonsedative histamine H1-receptor antagonist, mizolastine, on UV-induced acute sunburn reaction. Therefore, a clinical, randomized, double-blind, four-arm, crossover study was conducted in healthy young female volunteers (skin type II) comparing the UV sensitivity under mizolastine, acetyl-salicylic acid (ASA), indomethacin or a mizolastine/ASA combination. Moreover, HaCaT keratinocytes were incubated with mizolastine under various UV treatment modalities in vitro to study its effect on the release of inflammatory cytokines, i.e. interleukin (IL)-1,, IL-6 and tumor necrosis factor , (TNF-,). All three drugs were effective in suppressing the UVB-, UVA- and combined UVA/UVB-erythema. However, the strongest effects were observed using the combined treatment with both 250 mg ASA and 10 mg mizolastine. An inhibitory effect in vitro of 10 nM mizolastine upon UV-induced cytokine release from HaCaT keratinocytes was observed for IL-1, at 24 h after 10 J/cm2 UVA1, for IL-6 at 48 h after 10 J/cm2 UVA1 and 30 mJ/cm2 UVB, and also for TNF-, at 4 h after 10 J/cm2 UVA, 10 J/cm2 UVA1 and 30 mJ/cm2 UVB, respectively. The combination of mizolastine and ASA can be strongly recommended as a protective measure against UV erythema development with a lower unwanted side effect profile than that of the hitherto treatment modality, i.e. indomethacin. [source]


Resolvin D1 attenuates activation of sensory transient receptor potential channels leading to multiple anti-nociception

BRITISH JOURNAL OF PHARMACOLOGY, Issue 3 2010
S Bang
BACKGROUND AND PURPOSE Temperature-sensitive transient receptor potential ion channels (thermoTRPs) expressed in primary sensory neurons and skin keratinocytes play a crucial role as peripheral pain detectors. Many natural and synthetic ligands have been found to act on thermoTRPs, but little is known about endogenous compounds that inhibit these TRPs. Here, we asked whether resolvin D1 (RvD1), a naturally occurring anti-inflammatory and pro-resolving lipid molecule is able to affect the TRP channel activation. EXPERIMENTAL APPROACH We examined the effect of RvD1 on the six thermoTRPs using Ca2+ imaging and whole cell electrophysiology experiments using the HEK cell heterologous expression system, cultured sensory neurons and HaCaT keratinocytes. We also checked changes in agonist-specific acute licking/flicking or flinching behaviours and TRP-related mechanical and thermal pain behaviours using Hargreaves, Randall-Selitto and von Frey assay systems with or without inflammation. KEY RESULTS RvD1 inhibited the activities of TRPA1, TRPV3 and TRPV4 at nanomolar and micromolar levels. Consistent attenuations in agonist-specific acute pain behaviours by immediate peripheral administration with RvD1 were also observed. Furthermore, local pretreatment with RvD1 significantly reversed mechanical and thermal hypersensitivity in inflamed tissues. CONCLUSIONS AND IMPLICATIONS RvD1 was a novel endogenous inhibitor for several sensory TRPs. The results of our behavioural studies suggest that RvD1 has an analgesic potential via these TRP-related mechanisms. [source]