HRTEM

Distribution by Scientific Domains
Distribution within Polymers and Materials Science

Terms modified by HRTEM

  • hrtem image
  • hrtem observation

  • Selected Abstracts


    Synthesis and tribological properties of laminated Ti3SiC2 crystals

    CRYSTAL RESEARCH AND TECHNOLOGY, Issue 8 2010
    Qiong Wu
    Abstract Laminated Ti3SiC2 crystals are prepared of Ti, Si, C and Al powders by the method of hot isostatic pressing with NaCl additive in argon at 1350 °C. The laminated morphology of Ti3SiC2 is presented through the SEM and TEM observations. The results of high resolution transmission electron microscope (HRTEM) and selected area electron diffraction (SAED) patterns combined, it can be seen that the layers are of Ti3SiC2 crystals. The growth mechanism of Ti3SiC2 crystals, controlled by two-dimensional nucleation, is also explained. The tribological properties of Ti3SiC2 crystals as additives in HVI500 base oil are investigated by a UMT-2 ball-on-plate friction and wear tester. The study shows that under determinate conditions, the friction coefficient of the base oil containing Ti3SiC2 crystals is lower than that of pure base oil, and it decreases with the increase of mass percent of Ti3SiC2 nanolayers when its proportion is lower than 5wt. %. (© 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]


    Preparation of shuttle-like Sb2S3 nanorod-bundles via a solvothermal approach under alkaline condition

    CRYSTAL RESEARCH AND TECHNOLOGY, Issue 2 2010
    Ling Zhang
    Abstract Uniform shuttle-like Sb2S3 nanorod-bundles were synthesized via a polyvinylpyrrolidone (PVP) assisted solvothermal approach under alkaline condition, using antimony chloride (SbCl3) and thiourea (CH4N2S, Tu) as the starting materials in ethanol. The phase structure, composition and morphology of the product were characterized by means of X-ray diffraction (XRD), energy dispersive X-ray spectrometry (EDS), transmission electron microscopy (TEM), and high-resolution transmission electron microscopy (HRTEM). XRD and EDS results confirm that the synthesized Sb2S3 nanorod-bundles have an orthorhombic structure and an atomic ratio of 3:2 for S:Sb. TEM and HRTEM results show that the shuttle-like Sb2S3 bundles are composed of nanorods with a size distribution of 20-40 nm and growing along c-axis. Furthermore, experiments under different reaction conditions were carried out and the mechanism for the growth of nanorod-bundles was discussed (© 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]


    Solvothermal production of CdS nanorods using polyvinylpyrrolidone as a template

    CRYSTAL RESEARCH AND TECHNOLOGY, Issue 8 2009
    Titipun Thongtem
    Abstract CdS nanorods were solvothermally produced using Cd(NO3)2 and S powder in ethylenediamine containing different amounts of polyvinylpyrrolidone (PVP). The phase with hexagonal structure was detected using X-ray diffraction (XRD) and selected area electron diffraction (SAED). Their SAED patterns were in accordance with those of the simulations. Scanning and transmission electron microscopies (SEM and TEM) revealed the presence of CdS nanorods with their lengths influenced by different amounts of PVP. The nanorods were also characterized using high resolution TEM (HRTEM). They grew in the [001] direction normal to the (002) parallel crystallographic planes composing the nanorods. Raman spectra showed the 1LO (first harmonic) and 2LO (second harmonic) modes at the same wavenumbers although the products were produced under different conditions. (© 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]


    Low-Temperature Synthesis of Phase-Pure 0D,1D BaTiO3 Nanostructures Using H2Ti3O7 Templates

    EUROPEAN JOURNAL OF INORGANIC CHEMISTRY, Issue 9 2010
    Duk Kyu Lee
    Abstract One-dimensional (1D) barium titanate (BaTiO3) nanowires, which were uniformly covered with 0D BaTiO3 nanocrystals, were synthesized by using a simple solvothermal reaction of protonated trititanate (H2Ti3O7) nanowires with barium hydroxide octahydrate [Ba(OH)2·8H2O] at 80 °C in ethanol/water mixed solvent systems. The compositions of the mixed solvents , the volume ratio of ethanol to deionized water , was a key controlling parameter in order to determine the phase formation and primary particle size of the 0D BaTiO3 nanocrystals. Single-phase cubic perovskite BaTiO3 started to form at 80 °C in a mixed solvent containing more than approximately 60,% by volume of ethanol. Field-emission scanning electron microscopy (FESEM) and high-resolution transmission electron microscopy (HRTEM) analysis revealed that the as-prepared BaTiO3 retained its wire-shaped morphology with nanocrystals on the surface. Furthermore, the synthetic mechanism of the 0D-1D BaTiO3 nanostructures was demonstrated in view of the dielectric tuning of the mixed solvent and the similarities between the crystal structures of BaTiO3 and H2Ti3O7. [source]


    Study of the Defects in Sintered SnO2 by High-Resolution Transmission Electron Microscopy and Cathodoluminescence

    EUROPEAN JOURNAL OF INORGANIC CHEMISTRY, Issue 11 2007
    David Maestre
    Abstract The defect structure of sintered SnO2 was investigated by high-resolution transmission electron microscopy (HRTEM), cathodoluminescence (CL), and electrical measurements. HRTEM shows the presence of the SnO phase in the sintered samples as well as twinning, stacking faults, and disordered intergrowths. The sintered samples annealed under an oxygen atmosphere show changes in the defect structure and in the CL spectra. In particular, the intensity of a CL band at 1.94 eV, related to oxygen vacancies, decreased as the electrical resistivity increased. The results are discussed by considering the presence of stoichiometric defects such as oxygen vacancies and Sn interstitials in the final structure and their evolution during the annealing process under an oxygen atmosphere. (© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2007) [source]


    Fabrication and Microstructure of C/Cu Composites,

    ADVANCED ENGINEERING MATERIALS, Issue 6 2010
    Yiwen Liu
    C/Cu composites were prepared by a melting infiltration technique in vacuum. In order to improve the wettability between Cu and carbon fibers, Ti (8,wt.-%) and Cr (1,wt.-%) were added to the Cu alloy. Microstructures of the composites and interface between C and Cu were investigated by XRD, SEM, EDS and HRTEM. The results show that the Ti and Cr improved the wettability between Cu and CC preform and the infiltration ability of Cu into CC preform greatly. The prepared C/Cu composites are characterized as having good interface bonding and high density. In the process of infiltration, Ti and Cr concentrate on the boundary of carbon fiber. Formation of TiC results from the reaction of Ti and C between Cu and carbon fiber. [source]


    Syntheses, Li Insertion, and Photoactivity of Mesoporous Crystalline TiO2

    ADVANCED FUNCTIONAL MATERIALS, Issue 17 2009
    Wenbo Yue
    Abstract Ordered mesoporous rutile and anatase TiO2 samples are prepared using mesoporous silica SBA-15 as template and freshly synthesized titanium nitrate and titanium chloride solutions as precursors. The rutile material formed from the nitrate solution is monocrystalline and contains minimal amounts of Si with a Si:Ti ratio of 0.031(4), whereas the anatase material formed from the chloride solution comprises nanocrystals and contains a higher content of Si with a Si:Ti ratio of 0.18(3). It is found that control of temperature and selection of Ti-containing precursor play important roles in determining the crystal phase and crystallinity. A possible formation mechanism of porous crystalline TiO2 is suggested. Characterization of these porous materials is performed by XRD, HRTEM, and nitrogen adsorption/desorption. SBA-15-templated mesoporous rutile TiO2 exhibits a higher Li ion insertion capability than KIT-6-templated TiO2 due to its larger surface area. Likewise mesoporous anatase TiO2:SiO2 composite has a better photoactivity than bulk TiO2 or TiO2 -loaded SBA-15 for bleaching methylene blue. [source]


    Transmission Electron Microscopy and UV,vis,IR Spectroscopy Analysis of the Diameter Sorting of Carbon Nanotubes by Gradient Density Ultracentrifugation

    ADVANCED FUNCTIONAL MATERIALS, Issue 14 2009
    Romain Fleurier
    Abstract Diameter separation of single-walled carbon nanotubes is achieved via the density gradient ultracentrifugation process. Statistical analysis of the separated samples is performed using high-resolution transmission electron microscopy (HRTEM). The evolution of the diameter distribution with respect to the gradient density is extracted by analyzing hundreds of HRTEM images, and the results are found to be consistent with those estimated by UV,vis,IR spectroscopy. The efficiency of the separation process can be quantitatively characterized by the standard deviation of the diameter distribution, which is determined from the TEM analyses. This particular study indicated that for electric arc nanotubes dispersed in sodium cholate, diameter sorting is more efficient in the upper part of the gradient. [source]


    K-feldspar alteration to gel material and crystallization of glauconitic peloids with berthierine in Cretaceous marine sediments,sedimentary implications (Prebetic Zone, Betic Cordillera, SE Spain)

    GEOLOGICAL JOURNAL, Issue 1 2008
    Juan Jiménez-Millán
    Abstract Glauconitic peloids from a Hauterivian condensed level in a hemipelagic unit of the Internal Prebetic (Los Villares Formation, eastern Betic Cordillera) have been studied by X-ray diffraction (XRD), optical microscopy, scanning electron microscopy (SEM) and high-resolution transmission electron microscopy (HRTEM) and analytical electron microscopy (AEM). The sediments forming the condensed level are characterized by abundant spherical to ovoid green glauconite peloids with radial cracks. Quartz, feldspar and muscovite are also abundant, whereas calcium phosphate is rarely detected. XRD analysis of the peloids reveals glauconite and small amounts of berthierine. SEM and HRTEM data show feldspar dissolution features, a Si,Al-rich gel-like substance filling K-feldspar micropores and interlayering of well-crystallized glauconite and berthierine packets. The last stage of the glauconitization process resulted in conversion of the smectitic precursor. Sedimentary and mineralogical features indicate an autochthonous origin for the glauconite. The depositional environment was a distal, hemipelagic ramp on the Southern Iberian Continental Palaeomargin. Low sedimentation rates lead to sediment condensation in a general transgressive context. The margin was affected by extensional tectonics, creating tilted blocks, resulting in lateral facies changes. The dissolution of K-feldspars probably occurred after their deposition in the marine environment but predating the glauconitization. An influx of meteoric water is therefore required, probably related to subsurface fluxes from adjacent emergent areas (the higher parts of tilted blocks). Copyright © 2007 John Wiley & Sons, Ltd. [source]


    The Role of Sulfur in the Synthesis of Novel Carbon Morphologies: From Covalent Y-Junctions to Sea-Urchin-Like Structures

    ADVANCED FUNCTIONAL MATERIALS, Issue 8 2009
    Jose´ M. Romo-Herrera
    Abstract A detailed characterization, using high resolution electron microscopy/microanalysis (SEM, TEM, HRTEM, and EDX), reveals tubular carbon nanostructures exhibiting complex and fascinating morphologies. The materials were obtained by sulfur-assisted chemical vapor deposition. It is demonstrated that S not only acts on the catalyst, but also can be detected in the carbon lattice of the nanostructures. The experimental data presented here confirms the critical role of S, which is responsible for inducing curvature and therefore influencing the final carbon nanostructure morphology. In particular, different types of covalent Y-junctions of CNTs and even sea urchin-like nanostructures were produced and their experimental conditions are listed and discussed. [source]


    Formation of Chiral Mesopores in Conducting Polymers by Chiral-Lipid-Ribbon Templating and "Seeding" Route,

    ADVANCED FUNCTIONAL MATERIALS, Issue 18 2008
    Chaxing Fan
    Abstract Conducting polymer nanofibers with controllable chiral mesopores in the size, the shape, and handedness have been synthesized by chiral lipid ribbon templating and "seeding" route. Chiral mesoporous conducting poly(pyrrole) (CMPP) synthesized with very small amount of chiral amphiphilic molecules (usually,<,3%) has helically twisted channels with well-defined controllable pore size of 5,20,nm in central axis of the twisted fibers. The structure and chirality of helical mesopores have been characterized by high-resolution transmission electron microscope (HRTEM), scanning electron microscope (SEM) and electron tomography. The average pore diameters of chiral mesopores were approximately estimated from the N2 adsorption,desorption data and calculated by the conversion calculation from helical ribbons to a rectangular straight tape. The pore size of CMPP has been controlled by choosing different alkyl chain lengths of chiral lipid molecules or precisely adjusting the H2O/EtOH volume ratio. [source]


    Atomic Layer Deposition of UV-Absorbing ZnO Films on SiO2 and TiO2 Nanoparticles Using a Fluidized Bed Reactor,

    ADVANCED FUNCTIONAL MATERIALS, Issue 4 2008
    David M. King
    Atomic layer deposition (ALD) was used to apply conformal, nanothick ZnO coatings on particle substrates using a fluidized bed reactor. Diethylzinc (DEZ) and water were used as precursors at 177,°C. Observed growth rates were ca. 2.0 Å/cycle on primary particles as verified by HRTEM. ICP-AES and XPS were used to quantify Zn:substrate ratios. Layers of 6, 18, and 30 nm were deposited on 550 nm SiO2 spheres for UV blocking cosmetics particles. TiO2 nanoparticles were coated in the second part of this work by ZnO shells of 2, 5, and 10 nm thickness as novel inorganic sunscreen particles. The specific surface area of powders changed appropriately after nanothick film deposition using optimized conditions, signifying that high SA particles can be functionalized without agglomeration. The ZnO layers were polycrystalline as deposited and narrowing of the FWHM occurred upon annealing. Annealing the ZnO-TiO2 nanocomposite powder to 600,°C caused the formation of zinc titanate (Zn2TiO4) in both oxygen-rich and oxygen-deficient environments. The non-ideal surface behavior of the DEZ precursor became problematic for the much longer times required for high surface area nanoparticle processing and results in Zn-rich films at this growth temperature. In situ mass spectrometry provides process control capability to functionalize bulk quantities of nano- and ultrafine particles without significant precursor waste or process overruns. ZnO overlayers can be efficiently deposited on the surfaces of primary particles using ALD processing in a scalable fluidized bed reactor. [source]


    Covalent Functionalization of Carbon Nanohorns with Porphyrins: Nanohybrid Formation and Photoinduced Electron and Energy Transfer,

    ADVANCED FUNCTIONAL MATERIALS, Issue 10 2007
    G. Pagona
    Abstract The covalent attachment of carbon nanohorns (CNHs) to ,-5-(2-aminophenyl)-,-15-(2-nitrophenyl)-10,20-bis(2,4,6-trimethyl-phenyl)-porphyrin (H2P) via an amide bond is accomplished. The resulting CNH,H2P nanohybrids form a stable inklike solution. High-resolution transmission electron microscopy (HRTEM) images demonstrate that the original dahlia-flowerlike superstructure of the CNHs is preserved in the CNH,H2P nanohybrids. Steady-state and time-resolved fluorescence studies show efficient quenching of the excited singlet state of H2P, suggesting that both electron and energy transfer occur from the singlet excited state of H2P to CNHs, depending on the polarity of the solvent. In the case of electron transfer, photoexcitation of H2P results in the reduction of the nanohorns and the simultaneous oxidation of the porphyrin unit. The formation of a charge-separated state, CNH,,,H2P,+, has been corroborated with the help of an electron mediator, hexyl-viologen dication (HV2+), in polar solvents. Moreover, the charge-separated CNH,,,H2P,+ states have been identified by transient absorption spectroscopy. [source]


    A Facile Synthesis and Characterization of Monodisperse Spherical Pigment Particles with a Core/Shell Structure,

    ADVANCED FUNCTIONAL MATERIALS, Issue 9 2007
    C. Lin
    Abstract In this paper, a facile sol,gel process for producing monodisperse, spherical, and nonaggregated pigment particles with a core/shell structure is reported. Spherical silica particles (245 and 385,nm in diameter) and Cr2O3, ,-Fe2O3, ZnCo2O4, CuFeCrO4, MgFe2O4, and CoAl2O4 pigments are selected as cores and shells, respectively. The obtained core/shell-structured pigment samples, denoted as SiO2@Cr2O3 (green), SiO2@,-Fe2O3 (red), SiO2@MgFe2O4 (brown), SiO2@ZnCo2O4 (dark green), SiO2@CoAl2O4 (blue), and SiO2@CuFeCrO4 (black), are well characterized by using X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), and UV-vis diffuse reflection, as well as by investigating the magnetic properties. The results of XRD and high-resolution TEM (HRTEM) demonstrate that the pigment shells crystallize well on the surface of SiO2 particles. The thickness of the pigment shell can be tuned by the number of coatings, to some extent. These pigment particles can be well dispersed in some solvents (such as glycol) to form relatively more stable suspensions than the commercial products. Apart from the color characteristics, some of pigments like SiO2@Cr2O3, SiO2@MgFe2O4, and SiO2@CuFeCrO4 also show magnetic properties with coercivities of 1098,Oe (5,K), 648,Oe (5,K), and 91,Oe (298,K), respectively. [source]


    Concentric Sub-micrometer-Sized Cables Composed of Ni Nanowires and Sub-micrometer-Sized Fullerene Tubes,

    ADVANCED FUNCTIONAL MATERIALS, Issue 7 2007
    F. Tao
    Abstract Highly ordered arrays of submicrometer-sized coaxial cables composed of submicrometer-sized C60 and C70 tubes filled with Ni nanowires are successfully prepared by combining a sol,gel method with an electrodeposition process. The wall thickness of the submicrometer-sized tubes can be adjusted by the concentration of fullerenes and the immersion time. The thermal stability of the submicrometer-sized C60 tubes is studied by Raman spectroscopy and it is found that these structures can be easily decomposed to form carbon nanotubes at relatively low temperatures (above 573,K) in an alumina template. These novel coaxial cable structures have been characterized by transmission electron microscopy (TEM), high-resolution TEM (HRTEM), scanning electron microscopy (SEM), field-emission SEM (FESEM), Raman spectroscopy, elemental mapping, energy dispersive X-ray (EDX) spectroscopy, X-ray diffraction (XRD), vibrating sample magnetometer (VSM) experiments, and superconducting quantum interference device (SQUID) measurements. Magnetic measurements show that these submicrometer-sized cables exhibit enhanced ferromagnetic behavior as compared to bulk nickel. Moreover, submicrometer-sized C70/Ni cables show uniaxial magnetic anisotropy with the easy magnetic axis being parallel to the long axis of the Ni nanowires. C70/Ni cables also exhibit a new magnetic transition at ca.,10,K in the magnetization,temperature (M,T) curve, which is not observed for the analogous C60/Ni structures. The origin of this transition is not yet clear, but might be related to interactions between the Ni nanowires and C70 molecules. There is no preferred magnetization axis in submicrometer-sized C60/Ni cables, which implies that the Ni nanocrystals have different packing modes in the two composites. These different crystalline packing modes lead to different magnetic anisotropy in the two composites, although the Ni nanocrystals have the same face-centered cubic (fcc) structure in both cases. [source]


    Transparent Nanocomposites of Radiopaque, Flame-Made Ta2O5/SiO2 Particles in an Acrylic Matrix,

    ADVANCED FUNCTIONAL MATERIALS, Issue 5 2005
    H. Schulz
    Abstract Mixed Ta2O5 -containing SiO2 particles, 6,14,nm in diameter, with closely controlled refractive index, transparency, and crystallinity are prepared via flame spray pyrolysis (FSP) at production rates of 6.7,100,g,h,1. The effect of precursor solution composition on product filler (particle) size, crystallinity, Ta dispersity, and transparency is studied using nitrogen adsorption, X-ray diffraction, optical microscopy, high-resolution transmission electron microscopy (HRTEM), and diffuse-reflectance infrared Fourier-transform spectroscopy (DRIFTS). Emphasis is placed on the transparency of the composite that is made with Ta2O5/SiO2 filler and dimethylacrylate. Increasing Ta2O5 crystallinity and decreasing Ta dispersity on SiO2 decreases both filler and composite transparencies. Powders with identical specific surface area (SSA), refractive index (RI), and Ta2O5 content (24,wt.-%) show a wide range of composite transparencies, 33,78,%, depending on filler crystallinity and Ta dispersity. Amorphous fillers with a high Ta dispersity and an RI matching that of the polymer matrix lead to the highest composite transparency, 86,%. The composite containing 16.5,wt.-% filler that itself contains 35,wt.-% Ta2O5 has the optimal radiopacity for dental fillings. [source]


    Composition- and Shape-Controlled Synthesis and Optical Properties of ZnxCd1,xS Alloyed Nanocrystals,

    ADVANCED FUNCTIONAL MATERIALS, Issue 3 2005
    C. Li
    Abstract Composition-tunable ZnxCd1,xS alloyed nanocrystals have been synthesized by a new approach consisting of thermolyzing a mixture of cadmium ethylxanthate (Cd(exan)2) and zinc ethylxanthate (Zn(exan)2) precursors in hot, coordinating solvents at relatively low temperatures (180,210,°C). The composition of the alloyed nanocrystals was accurately adjusted by controlling the molar ratio of Cd(exan)2 to Zn(exan)2 in the mixed reactants. The alloyed ZnxCd1,xS nanocrystals prepared in HDA/TOP (HDA: hexadecylamine; TOP: trioctylphosphine) solution exhibit composition-dependent shape and phase structures as well as composition-dependent optical properties. The shape of the ZnxCd1,xS nanocrystals changed from dot to single-armed rod then to multi-armed rod with a decrease of Zn content in the ternary nanoparticles. The alloying nature of the ZnxCd1,xS nanocrystals was consistently confirmed by the results of high-resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), and UV-vis absorption and photoluminescence (PL) spectroscopy. Further, the shape-controlled synthesis of the ternary alloyed nanocrystals was realized by selecting appropriate solvents. Uniform nanodots in the whole composition range were obtained from TOPO/TOP solution, (TOPO: trioctylphosphine oxide) and uniform nanorods in the whole composition range were prepared from HDA/OA solution (OA: octylamine). The effect of the reaction conditions, such as solvent, reaction temperature, and reaction time, on the PL spectra of the alloyed ZnxCd1,xS nanocrystals was also systematically studied, and the reaction conditions were optimized for improving the PL properties of the nanocrystals. [source]


    Single-Crystalline Gallium Nitride Microspindles: Synthesis, Characterization, and Thermal Stability ,

    ADVANCED FUNCTIONAL MATERIALS, Issue 5 2004
    F. Xu
    Abstract This paper describes a facile procedure for synthesizing high-quality gallium nitride microspindles on a large scale using a solid-state reaction of GaI3, NaNH2, and NH4Cl in a sealed system at 500,°C for 6,h. The structures, compositions, and morphologies of the as-synthesized products are derived from X-ray powder diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), and field-emission scanning electron microscopy (FE-SEM). The selected-area electron diffraction (SAED) patterns and high-resolution transmission electron microscopy (HRTEM) images show that the as-synthesized GaN spindles are composed of many single-crystalline platelets. The GaN microspindles show different optical properties depending on their shape (e.g., nanowires or nanoparticles) in photoluminescence (PL) emission spectroscopy and Raman spectroscopy. The possible growth mechanism of GaN microspindles is controlled by linear kinetics with a driving force proportional to the difference between a local supersaturation and an equilibrium chemical potential. Furthermore, the thermal stability of the GaN microspindles is investigated under various annealing conditions and discussed on the basis of additional TEM and XRD analyses. [source]


    Selective Atmospheric Pressure Chemical Vapor Deposition Route to CdS Arrays, Nanowires, and Nanocombs

    ADVANCED FUNCTIONAL MATERIALS, Issue 2 2004
    P. Ge
    Abstract CdS arrays, nanowires, and nanocombs were selectively prepared through an atmospheric pressure chemical vapor deposition (APCVD) process with CdCl2 and S as sources. The morphologies could be controlled by adjusting the deposition position, the temperature, and the flux of the carrier gas. The phase structure, morphologies, and photoluminescence properties of the CdS products were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), and photoluminescence (PL) spectra. The formation mechanism of the nanowires is discussed on the basis of the experimental results. The adopted synthetic route is expected to be applied in the synthesis of other metal sulfide one-dimensional (1D) nanostructures. [source]


    Synthesis of Indium and Indium Oxide Nanoparticles from Indium Cyclopentadienyl Precursor and Their Application for Gas Sensing,

    ADVANCED FUNCTIONAL MATERIALS, Issue 7 2003
    K. Soulantica
    Abstract Decomposition of the organometallic precursor [In(,5 -C5H5)] in toluene in the presence of methanol (8 vol.-%) at room temperature leads to the immediate formation of aggregates of indium nanoparticles of 15,±,2 nm mean diameter. The aggregates are roughly spherical with a mean size of 400,±,40 nm. The particles were characterized by means of transmission electron and high-resolution transmission electron microscopies (TEM and HRTEM), and X-ray diffraction (XRD) studies indicate that the powder consists of the tetragonal phase of indium. The thermal oxidation in air of these nanoparticles yields well-crystallized nanoparticles of In2O3 with unchanged morphology (aggregates of nanoparticles of 16.6,±,2 nm mean diameter with aggregate mean size of 400,±,40 nm) and without any sign of coalescence. XRD pattern shows that the powder consists of the cubic phase of In2O3. The electrical conductivity measurements demonstrate that this material is highly sensitive to an oxidizing gas such as nitrogen dioxide and barely sensitive to a reducing gas such as carbon monoxide. Its association with SnO2 -based sensors allows the selective detection of carbon monoxide (30 ppm) and sub-ppm amounts of nitrogen dioxide (400 ppb) in a mixture at 21,°C and at a relative humidity of 60,%. [source]


    Trapping Metallic Liquid Mercury in a Carbon Shell by the Decomposition of Dimethyl Mercury,

    ADVANCED MATERIALS, Issue 5 2008
    A. Gedanken
    An efficient single-step synthesis of mercury droplets covered with a carbon shell by the thermolysis of dimethyl mercury under its autogenic pressure is described. This is a unique case in which a liquid metal is trapped inside a nano- and micrometer size carbon capsule. The air-stability and the characterization by XRD, TEM, DSC, HRSEM, and HRTEM of this composite are reported. [source]


    Quasi-Epitaxial Growth of Ni Nanoshells on Au Nanorods,

    ADVANCED MATERIALS, Issue 17 2007
    M. Grzelczak
    Magnetic nickel shells can be grown on gold nanorods with platinum tips by reduction of Ni2+ with hydrazine in aqueous cetyl-trimethylammonium bromide (CTAB) solution, using Pt tips as catalysts. The plasmon absorption of the starting gold nanorods can be totally quenched by the metallic layer of nickel, while the magnetic character of these anisotropic, hybrid nanocrystals is demonstrated through alignment under an external magnetic field. Quasi-epitaxial growth is demonstrated by HRTEM and electron diffraction (see figure). [source]


    Crystal structure of cobalt-substituted calcium hydroxyapatite nanopowders prepared by hydrothermal processing

    JOURNAL OF APPLIED CRYSTALLOGRAPHY, Issue 2 2010
    Ljiljana Veselinovi
    A series of cobalt-exchanged hydroxyapatite (CoHAp) powders with different Ca/Co ratios and nominal unit-cell contents Ca10,xCox(PO4)6(OH)2, x = 0, 0.5, 1.0, 1.5 and 2.0, were synthesized by hydrothermal treatment of a precipitate at 473,K for 8,h. Based on ICP (inductively coupled plasma) emission spectroscopy analysis, it was established that the maximum amount of cobalt incorporation saturated at ,12,at.% under these conditions. The effects of cobalt content on the CoHAp powders were investigated using ICP emission spectroscopy, particle size analysis, transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HRTEM) analyses as well as X-ray powder diffraction (XRPD) including Rietveld analysis. According to XRPD, all the materials are single-phase HAp and CoHAp of low crystallinity. Rietveld analysis shows that Co enrichment causes the c cell parameter to decrease at a faster rate than the a cell parameter. A microstructural analysis showed anisotropic X-ray line broadening due to crystallite size reduction. In CoHAp there is significant crystal elongation in [001], and the average size decreases with increasing cobalt content. The crystallite morphology transforms from rod-like for the pure HAp to lamellae at the highest degree of Co substitution. The results of Rietveld refinement (symmetry, size and morphology of the crystallites) were confirmed by TEM and HRTEM analysis. [source]


    Synthesis and characterizations of nanosized iron(II) hydroxide and iron(II) hydroxide/poly(vinyl alcohol) nanocomposite

    JOURNAL OF APPLIED POLYMER SCIENCE, Issue 3 2010
    M. Fathima Parveen
    Abstract Nanosized Fe(OH)2 was synthesized by a coprecipitation method. Peaks between 500 and 1250 cm,1 in Fourier transform infrared (FTIR) spectroscopy confirmed the presence of metal hydroxide stretching. X-ray diffraction showed the suppressed crystalline system of Fe(OH)2/aniline (ANI) due to the presence of a higher weight percentage of the dispersing agent, ANI. Thermogravimetric analysis implied that 75.5 wt % of residue remained up to 800°C. High resolution transmission electron microscope (HRTEM) analysis of Fe(OH)2/ANI revealed that its size ranged from 10 to 50 nm with a rodlike morphology. Scanning electron microscopy implied that pristine Fe(OH)2 had a nanotriangular platelet morphology, and a higher weight percentage of dispersing agent intercalated with Fe(OH)2 had a spheroid with an agglomerated structure. The (UV,visible) spectrum implied the presence of Fe2+ ions at 326 nm and the existence of an amino group intercalated with Fe(OH)2 showed a sharp peak at 195 nm, the intensity of which increased with increasing intercalated dispersing agent weight percentage. Photoluminescence showed that ANI-intercalated Fe(OH)2 showed a lesser intensity than the pristine Fe(OH)2. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010 [source]


    Combining Ar ion milling with FIB lift-out techniques to prepare high quality site-specific TEM samples

    JOURNAL OF MICROSCOPY, Issue 3 2004
    Z. HUANG
    Summary Focused ion beam (FIB) techniques can prepare site-specific transmission electron microscopy (TEM) cross-section samples very quickly but they suffer from beam damage by the high energy Ga+ ion beam. An amorphous layer about 20,30 nm thick on each side of the TEM lamella and the supporting carbon film makes FIB-prepared samples inferior to the traditional Ar+ thinned samples for some investigations such as high resolution transmission electron microscopy (HRTEM) and electron energy loss spectroscopy (EELS). We have developed techniques to combine broad argon ion milling with focused ion beam lift-out methods to prepare high-quality site-specific TEM cross-section samples. Site-specific TEM cross-sections were prepared by FIB and lifted out using a Narishige micromanipulator onto a half copper-grid coated with carbon film. Pt deposition by FIB was used to bond the lamellae to the Cu grid, then the coating carbon film was removed and the sample on the bare Cu grid was polished by the usual broad beam Ar+ milling. By doing so, the thickness of the surface amorphous layers is reduced substantially and the sample quality for TEM observation is as good as the traditional Ar+ milled samples. [source]


    Synthesis of metal (Fe or Pd)/alloy (Fe,Pd)-nanoparticles-embedded multiwall carbon nanotube/sulfonated polyaniline composites by , irradiation

    JOURNAL OF POLYMER SCIENCE (IN TWO SECTIONS), Issue 10 2006
    Kakarla Raghava Reddy
    Abstract Composites of multiwall carbon nanotubes (MWCNTs) and sulfonated polyaniline (SPAN) were prepared through the oxidative polymerization of a mixture of aniline, 2,5-diaminobenzene sulfonic acid, and MWCNTs. Fe, Pd, or Fe,Pd alloy nanoparticles were embedded into the MWCNT,SPAN matrix by the reduction of Fe, Pd, or a mixture of Fe and Pd ions with , radiation. Sulfonic acid groups and the emeraldine form of backbone units in SPAN served as the source for the reduction of the metal ions in the presence of , radiation. The existence of metallic/alloy particles in the MWCNT,SPAN matrix was further ascertained through characterization by high-resolution transmission electron microscopy (HRTEM), Fourier transform infrared spectroscopy, ultraviolet,visible spectroscopy, thermogravimetric analysis, and conductivity measurements. HRTEM pictures clearly revealed the existence of Fe, Pd, and Fe,Pd nanoparticles of various sizes in the MWCNT,SPAN matrices. There were changes in the electronic properties of the MWCNT,SPAN,M composites due to the interaction between the metal nanoparticles and MWCNT,SPAN. Metal-nanoparticle-loaded MWCNT,SPAN composites (MWCNT,SPAN,M; M = Fe, Pd, or Fe,Pd alloy) showed better thermal stability than the pristine polymers. The conductivity of the MWCNT,SPAN,M composites was approximately 1.5 S cm,1, which was much higher than that of SPAN (2.46 × 10,4 S cm,1). Metal/alloy-nanoparticle-embedded, MWCNT-based composite materials are expected to find applications in molecular electronics and other fields. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3355,3364, 2006 [source]


    Cation Ordering and Domain Boundaries in Ca[(Mg1/3Ta2/3)1,xTix]O3 Microwave Dielectric Ceramics

    JOURNAL OF THE AMERICAN CERAMIC SOCIETY, Issue 8 2008
    Mao Sen Fu
    Cation ordering and domain boundaries in perovskite Ca[(Mg1/3Ta2/3)1,xTix]O3 (x=0.1, 0.2, 0.3) microwave dielectric ceramics were investigated by high-resolution transmission electron microscopy (HRTEM) and Rietveld analysis. The variation of ordering structure with Ti substitution was revealed together with the formation mechanism of ordering domains. When x=0.1, the ceramics were composed of 1:2 and 1:1 ordered domains and a disordered matrix. The 1:2 cation ordering could still exist until x=0.2 but the 1:1 ordering disappeared. Neither 1:2 nor 1:1 cation ordering could exist at x=0.3. The space charge model was used to explain the cation ordering change from 1:2 to 1:1 and then to disorder. A comparison between the space charge model and random layer model was also conducted. HRTEM observations showed an antiphase boundary inclined to the (111)c plane with a projected displacement vector in the ,001,c direction and ferroelastic domain boundaries parallel to the ,100,c direction. [source]


    Microstructure of Nanocrystalline Yttria-Doped Zirconia Thin Films Obtained by Sol,Gel Processing

    JOURNAL OF THE AMERICAN CERAMIC SOCIETY, Issue 7 2008
    Benjamin Butz
    Nano- and microcrystalline yttria-stabilized zirconia (YSZ) thin films with a dopant concentration of 8.3±0.3 mol% Y2O3 were prepared with a variation in grain size by two orders of magnitude. A sol,gel-based method with consecutive rapid thermal annealing was applied to fabricate YSZ films, resulting in about 400 nm YSZ on sapphire substrates. The average grain sizes were varied between 5 nm and 0.5 ,m by heat treatment in the temperature range of 650°,1350°C for 24 h. High-resolution (HRTEM) and conventional transmission electron microscopy analyses confirmed specimens,irrespective of the thermal treatment,consisting of cubic (c -)ZrO2 grains with nanoscaled tetragonal precipitates coherently embedded in the cubic matrix. Energy-dispersive X-ray spectroscopy and HRTEM on a large number of specimens yielded a homogeneous yttria concentration within the grains and at the grain boundaries with the absence of impurities, i.e. silica at the grain boundaries. [source]


    Investigation of the Structural Characterization of Mesoporous Molecular Sieves MCM-41 from Sepiolite

    JOURNAL OF THE AMERICAN CERAMIC SOCIETY, Issue 3 2007
    Shengming Jin
    Mesoporous molecular sieves, MCM-41, were synthesized from sepiolite using acid leaching, followed by hydrothermal reconstruction and then calcinations at 540°C for 5 h. The structures and the porosity of MCM-41 were investigated by means of small-angle X-ray diffraction patterns, Brunaer-Emmett-Teller (BET), 29Si MAS NMR, Fourier transform infrared (FTIR), and high resolution transmission electron microscope (HRTEM) methods. The results showed that the hexagonal MCM-41 was formed in an alkaline solution of pH 12, when crystallization was carried out at 100°C for 24 h. The specific surface area, pore diameter, and pore volumes of MCM-41 from sepiolite were 1036 m2/g, 2.98 nm, and 1.06 cm3/g, respectively. 29Si MAS NMR results revealed that amorphous silica decomposed into Si,O chains consisting of two layers of Si atoms, with Q3 configurations resulting in an increase in the fraction of Q3 configuration during the crystallization of post-Mg-extraction sepiolite. The IR results illustrated that the complex of ,,SiO,,CTA+ was formed during the synthesis of MCM-41 from post-Mg-extraction sepiolite. [source]


    Atomic Structures and Electrical Properties of ZnO Grain Boundaries

    JOURNAL OF THE AMERICAN CERAMIC SOCIETY, Issue 2 2007
    Yukio Sato
    Various properties of ceramics can be significantly influenced by the presence of grain boundaries. The influence on the properties is closely related to the grain-boundary atomic structures. As different grain boundaries have different atomic structure, different grain boundaries have different influence on the properties. It is difficult to examine the atomic structure and properties of individual grain boundaries in ceramics. In order to understand the atomic,structure,property relationships, well-defined single grain boundaries should be characterized. In the present paper, we review our recent results on the investigations of atomic structures and electrical properties of ZnO single grain boundaries. The relationships between the atomic structures and the electrical properties were investigated using ZnO bicrystals, whose grain-boundary orientation relationship and grain-boundary planes can be arbitrarily controlled. The discussion focuses on the microscopic origin of nonlinear current,voltage (I,V) characteristics across ZnO grain boundaries. High-resolution transmission electron microscopy (HRTEM) observations and lattice-statics calculations revealed the atomic structures of the undoped ZnO [0001] ,7 and ,49 grain boundaries, enabling a comparison between coincidence site lattice (CSL) boundaries with small and large periodicity. These grain boundaries contained the common structural units (SUs) featuring atoms with coordination numbers that are unusual in ZnO. The ,49 boundary was found to have characteristic arrangement of the SUs, where two kinds of the SUs are alternatively formed. It is considered that the characteristic arrangement was formed to effectively relax the local strain in the vicinity of the boundary. Such a relaxation of local strain is considered to be one of dominant factors to determine the SU arrangements along grain boundaries. I,V measurements of the undoped ZnO bicrystals showed linear I,V characteristics. Although the coordination and bond lengths of atoms in the grain boundaries differ from those in the bulk crystal, this does apparently not generate deep unoccupied states in the band gap. This indicates that atomic structures of undoped ZnO grain boundaries are not responsible for the nonlinear I,V characteristics of ZnO ceramics. On the other hand, the nonlinear I,V characteristic appeared when doping the boundaries with Pr. High-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) image of Pr-doped boundaries revealed that Pr segregates to specific atomic columns, substituting Zn at the boundary. However, the Pr itself was not the direct origin of the nonlinear I,V characteristics, as the Pr existed in the three-plus state and would not produce acceptor states in the boundary. First-principles calculations revealed that Pr doping instead promotes the formations of acceptor-like native defects, such as Zn vacancies. We believe that such acceptor-like native defects are microscopic origin of the nonlinear I,V characteristics. Investigations of various types of grain boundaries in the Pr and Co-codoped ZnO bicrystals indicated that the amounts of Pr segregation and the nonlinear I,V characteristics significantly depend on the grain-boundary orientation relationship. Larger amount of Pr segregation and, as a result, higher nonlinearity in I,V characteristics was obtained for incoherent boundaries. This indicates that Pr doping to incoherent boundaries is one of the guidelines to design the single grain boundaries with highly nonlinear I,V characteristics. Finally, a Pr and Co-codoped bicrystal with an incoherent boundary was fabricated to demonstrate a highly nonlinear I,V characteristic. This result indicates that ZnO single-grain-boundary varistors can be designed by controlling grain-boundary atomic structures and fabrication processes. Summarizing, our work firstly enabled us to gain a deeper understanding for the atomic structure of ZnO grain boundaries. Secondly, we obtained important insight into the origin of nonlinear I,V characteristics across the ZnO grain boundaries. And, finally, based on these results, we demonstrated the potential of this knowledge for designing and fabricating ZnO single-grain-boundary varistors. [source]