HPLC Measurement (hplc + measurement)

Distribution by Scientific Domains


Selected Abstracts


Platelet activating factor (PAF) increases plasma protein extravasation and induces lowering of interstitial fluid pressure (Pif) in rat skin

ACTA PHYSIOLOGICA, Issue 1 2005
V. V. Iversen
Abstract Aim:, To investigate the ability of the microdialysis technique to measure capillary selectivity of different sized plasma proteins induced by local administration of platelet activating factor (PAF). Methods:, We used hollow plasmapheresis fibres with 3 cm membrane (cut off 3000 kDa) placed on the back of anaesthetized rats. Results:, Platelet activating factor (50 ,g mL,1) administered locally via the fibre, increased extravasation of radiolabelled 125I-HSA from plasma to the microdialysis fibre by approximately 900% compared both to baseline and the control fibre within 70 min (n = 6, P < 0.05). The extravasation in the control fibre did not change over time. HPLC measurement of plasma proteins in the microdialysis perfusate also demonstrated decreased capillary selectivity for proteins in the diameter range of 73 Å, 56 Å and 39 Å after local administration of PAF (n = 6, P < 0.05). PAF also significantly lowered interstitial fluid (Pif) pressure after subcutaneous administration (50 ,g mL,1). Mean arterial pressure (MAP) after intravenous injection of PAF (0.4 ,g kg,1) fell instantly by about 50 mmHg, and stabilized at 50 mmHg after 15 min (n = 6). MAP was unaltered when PAF was given through the microdialysis fibre (n = 4). Both total tissue water (TTW) and extravasation of albumin, measured as the plasma-to-tissue clearance (E-alb) showed a significant increase after PAF (n = 7, P < 0.05). Conclusions:, The present study demonstrates that PAF induces plasma protein extravasation and decrease capillary selectivity of different sized plasma proteins. It also increases transcapillary fluid flux, and lowers Pif, indicating a role for PAF in the interstitium for generation of transcapillary transport of water and large molecules followed by formation of oedema. [source]


High performance liquid chromatography (HPLC) in the investigation of gout in palaeopathology

INTERNATIONAL JOURNAL OF OSTEOARCHAEOLOGY, Issue 2 2010
D. Swinson
Abstract Gout is a disease caused by the abnormal accumulation of uric acid in the body, which can result in sodium urate crystals forming tophi at joints, with associated erosion of bone and cartilage. Only two examples of tophi have been reported from archaeological individuals, and the diagnosis of gout based on dry bone manifestations can be difficult. This paper presents preliminary results of a new technique to aid the diagnosis of gout in palaeopathology, namely high performance liquid chromatography (HPLC). Five archaeological skeletons with suspected gout (diagnosed using visual and radiological analysis) and three controls were analysed. Two of the gouty individuals had a white powder in their erosive lesions. HPLC showed the presence of uric acid in bone in four of the five individuals with evidence of gouty arthritis and was negative for uric acid in bone from the three controls. The white powder was also positive for uric acid. With reliance on the presence of articular erosions, cases of gout will be missed in archaeological human bone. HPLC measurement of uric acid could prove useful in the differential diagnosis of erosive arthropathy in archaeology. It may also be useful in identifying individuals with an increased body pool of uric acid, linked to conditions included in the term ,metabolic syndrome'. As a result, HPLC uric acid measurement also has the potential to provide additional information on health and lifestyle in past communities. Copyright © 2008 John Wiley & Sons, Ltd. [source]


Hypoxanthine (HX) inhibition of in vitro meiotic resumption in goat oocytes

MOLECULAR REPRODUCTION & DEVELOPMENT, Issue 3 2003
Suofeng Ma
Abstract To improve in vitro maturation and to understand the mechanism for meiotic resumption of oocytes, meiotic progression, and its control by hypoxanthine (HX) were studied in goat oocytes. Ovaries were obtained from a local abattoir, and cumulus,oocyte complexes (COCs) and follicular fluid were collected from follicles of different surface diameters (SDs). The meiotic competence and progression of oocytes were observed, and the concentration of HX in the follicular fluid and culture media was measured by high-performance liquid chromatography (HPLC). Full meiotic competence of goat oocytes was acquired in follicles of ,1.5 mm in SD with 90% of the oocytes developing to metaphase II (MII) stage after 24 hr in culture. The HX concentration in follicular fluid decreased with follicle development, from the highest level of 1.16 mM in ,0.5 mm follicles to the lowest level of 0.45 mM in ,5 mm follicles. HX inhibited meiotic resumption of goat oocytes in a concentration-related manner but this inhibitory effect declined gradually. When we renewed the medium at 4 hr of HX-199 (TCM-199 supplemented with 4 mM HX) culture, the percentage of oocytes with intact germinal vesicle (GV) did not increase but decreased significantly instead. HPLC measurement of HX in the HX-199 culture drops indicated that the HX concentration declined from 0 hr to 4 hr of culture and after medium renewal at 4 hr of culture. By adding dibutyryl cAMP (db-cAMP) at medium renewal, we found that db-cAMP held up the decline of GV percentages. Together, these results were consistent with the possibility that the decline of HX inhibitory effect was not due to HX depletion but rather due to the negative feedback of the metabolites on its further uptake by oocytes. Goat oocytes were capable of normal nuclear maturation and activation after temporal arrest by HX, but prolonged exposure to HX induced spontaneous activation. Mol. Reprod. Dev. 66: 306,313, 2003. © 2003 Wiley-Liss, Inc. [source]


Estimation of endogenous adenosine activity at adenosine receptors in guinea-pig ileum using a new pharmacological method

ACTA PHYSIOLOGICA, Issue 2 2010
K. F. Nilsson
Abstract Aim:, Adenosine modulates neurotransmission and in the intestine adenosine is continuously released both from nerves and from smooth muscle. The main effect is modulation of contractile activity by inhibition of neurotransmitter release and by direct smooth muscle relaxation. Estimation of adenosine concentration at the receptors is difficult due to metabolic inactivation. We hypothesized that endogenous adenosine concentrations can be calculated by using adenosine receptor antagonist and agonist and dose ratio (DR) equations. Methods:, Plexus-containing guinea-pig ileum longitudinal smooth muscle preparations were made to contract intermittently by electrical field stimulation in organ baths. Schild plot regressions were constructed with 2-chloroadenosine (agonist) and 8-(p -sulfophenyl)theophylline (8-PST; antagonist). In separate experiments the reversing or enhancing effect of 8-PST and the inhibiting effect of 2-chloroadenosine (CADO) were analysed in the absence or presence of an adenosine uptake inhibitor (dilazep), and nucleoside overflow was measured by HPLC. Results:, Using the obtained DR, baseline adenosine concentration was calculated to 28 nm expressed as CADO activity, which increased dose dependently after addition of 10,6 m dilazep to 150 nm (P < 0.05). HPLC measurements yielded a lower fractional increment (80%) in adenosine during dilazep, than found in the pharmacological determination (440%). Conclusion:, Endogenous adenosine is an important modulator of intestinal neuro-effector activity, operating in the linear part of the dose,response curve. Other adenosine-like agonists might contribute to neuromodulation and the derived formulas can be used to calculate endogenous agonist activity, which is markedly affected by nucleoside uptake inhibition. The method described should be suitable for other endogenous signalling molecules in many biological systems. [source]


Quantitative determination of haloperidol in tablets by high performance thin-layer chromatography

JOURNAL OF SEPARATION SCIENCE, JSS, Issue 5 2007
Sigrid Mennickent
Abstract A densitometric high performance thin-layer chromatography (HPTLC) method was developed and validated for the quantitative analysis of haloperidol in tablets. Chromatographic separation was achieved on precoated silica gel F 254 HPTLC plates using a mixture of acetone/chloroform/n -butanol/acetic acid glacial/water (5:10:10:2.5:2.5 v/v/v/v/v) as the mobile phase. Quantitative analysis was carried out at a wavelength of 254 nm. The method was linear in the 10,100 ng/,L range, with a determination coefficient of 0.999. The coefficients of variation for precision were not higher than 2.35%. The detection limit was 0.89 ng/,L, and the quantification limit was 2.71 ng/,L. The accuracy ranged from 97.76 to 100.33%, with a CV not higher than 4.50%. This method was successfully applied to quantify haloperidol in real pharmaceutical samples, including the comparison with HPLC measurements. The method was fast, specific, with a good precision and accuracy for the quantitative determination of haloperidol in tablets. [source]